
Running head: TEXT DATASET AUGMENTATION 1 

OPTION #1: Text Dataset Augmentation 

Scott Miner 

Colorado State University – Global Campus



TEXT DATASET AUGMENTATION  2 

Abstract 

This paper presents a Python program that employs round-trip translation (RTT) for text 

augmentation, expanding the dataset for natural language processing (NLP) tasks. The program 

reads and augments each line of TXT files in the "data/" folder using the NLPAug Python 

library's back-translation augmenter. We explore various text augmentation techniques, including 

synonym augmentation, semantic similarity augmentation, and RTT. The effectiveness of the 

program is demonstrated by augmenting the classic text, Moby Dick, and comparing the original 

and back-translated versions side by side. The paper concludes that the RTT technique, while not 

perfect, can be potentially useful for augmenting training data for NLP tasks, such as training 

chatbots to recognize variations in user input. 



TEXT DATASET AUGMENTATION  3 

 

Figure 1. Screenshot of the program code, featuring the implementation of the 'augment_file' function 
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Figure 2. Screenshot of program output displaying the augmented text of Chapter 1 from Moby Dick, with each line shown 
sequentially in the console 
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Figure 3. Screenshot of program output displaying the augmented text of Chapter 2 from Moby Dick, with each line shown 
sequentially in the console. 
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Figure 3. Screenshot of program output displaying the augmented text of Chapter 2 from Moby Dick, with each line shown 
sequentially in the console. 
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Figure 4. A side-by-side comparison of Moby Dick's Chapter 1: original text (left) and back-translated text (right) using the round-trip 
translation augmentation technique. 

 

Figure 5. A side-by-side comparison of Moby Dick's Chapter 2: original text (left) and back-translated text (right) using the round-trip 
translation augmentation technique. 
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OPTION #1: Text Dataset Augmentation 

This paper presents a Python script designed to augment text datasets, effectively 

expanding the available data for training. Marivate and Sefara (2020) note that numerous image 

classification tasks have significantly benefited from data augmentation techniques. By altering 

an image’s structure, these methods increase the number of training samples accessible to an 

algorithm, enhancing the model’s resilience. However, applying similar augmentation techniques 

to text datasets has been challenging, as some approaches demand a deeper understanding of the 

language in question. 

Text Dataset Augmentation for Natural Language Processing (NLP) 

To address this issue, this paper explores various text augmentation techniques and 

presents a Python script that employs round-trip translation (RTT) as an effective means of 

augmenting text data. By applying this script to any text file within the “data/” folder, the user 

can successfully expand their dataset while maintaining the integrity of the original information. 

This improved augmentation approach has the potential to make a significant impact on the 

development of more robust natural language processing models. 

Synonym Augmentation 

Marivate and Sefara (2020) classify text augmentation techniques into two primary 

categories: those that operate on the text source and those that focus on text representation. 

Ideally, textual data should be augmented by linguistic experts who can manually rephrase 

sentences using language modeling rules. However, this approach can be costly and time-

consuming. An alternative method involves replacing words with synonyms, which falls under 

the category of augmenting a text’s source. 

WordNet, an open-source lexical database, is a valuable tool for implementing synonym-

based augmentation. It organizes English nouns, verbs, and adjectives into synonym sets or 
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synsets, representing distinct lexical concepts, while also documenting the relationships between 

these groups (Miller et al., 1990). Zhang et al. (2015) successfully employed WordNet to 

augment training data, enabling a convolutional network to better understand textual input at the 

character level.  

Semantic Similarity Augmentation 

Another approach highlighted by Marivate and Sefara (2020) is semantic similarity 

augmentation, which focuses on modifying a text’s representation rather than its source. Unlike 

synonym augmentation, this technique does not rely on dictionaries or thesauri. Instead, it 

necessitates the use of pre-trained word embeddings or the creation of custom word embeddings. 

Word embeddings are dense vector representations of words, generated through neural 

network-inspired training methods (Levy & Goldberg, 2014). This method distinguishes itself 

from the previous approach by utilizing distributed word representations to substitute words with 

those found in similar contexts. In contrast, synonym augmentation depends on manually 

maintained lexical databases, such as WordNet (Marivate & Sefara, 2020). 

Back-Translation Augmentation 

Marivate and Sefara (2020) also discuss round-trip translation (RTT), sometimes 

referred to as bi-directional, back-and-forth, or recursive translation. This text augmentation 

technique expands training data by translating a text into a foreign language and then translating 

it back into the original language. For example, an English text might be translated into Spanish 

and then translated back into English. 

Somers (2005) explains that RTT is frequently employed to assess machine translation 

(MT) systems. According to Anon (2003, as cited in Somers, 2005), the original English text 

should ideally be identical to the back-translated English text. As a result, the round-trip process 
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through a back translation engine can be used to evaluate the accuracy of the translated text and 

the underlying model (Anon, 2005, as cited in Somers, 2005). 

The NLPAug Python Library for Dataset Augmentation 

The program presented in this paper employs the NLPAug Python library to augment any 

text dataset stored in the “data/” directory. Nithilaau (2021) explains that NLPAug offers three 

levels of augmentation: (a) character level, (b) word level, and (c) flow/sentence level. 

Character Level Augmentation 

Character level augmentation operates on individual characters within the text, making it 

useful for applications like chatbot training data. Since user input to chatbots often contains 

typos despite auto-correct features, the NLPAug library provides a “keyboard” augmenter that 

simulates typographical errors by replacing characters with nearby ones on a keyboard. 

Word and Flow Level Augmentation 

Word level augmentations in the NLPAug library encompass various methods, including 

“synonym,” “antonym,” “random,” “spelling,” and “split” augmenters. These augmenters 

manipulate words within the text to create variations in the dataset. Lastly, flow level augmenters 

such as “sequential” and “sometimes” target the overall structure of sentences or the order of text 

elements. 

The Back Translation Augmenter Program 

The “back translation” augmenter is a word-level augmenter that leverages two 

translation models for augmentation (Nlpaug.Augmenter.Word.Back_translation — Nlpaug 

1.2.0dev Documentation, n.d.). In this paper’s implementation, English text datasets are 

translated into German and then back to English. Among the various techniques discussed 

earlier, round-trip translation (RTT) generates augmented text that closely resembles the original 

content. RTT does not introduce spelling errors, random words, or antonyms into the text. Even 
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“synonym” augmenters sometimes produced unexpected alterations in straightforward sentences. 

Consequently, RTT was chosen because it provided the most coherent and consistent 

augmentation results upon initial examination. 

Program Overview 

The provided function, spanning just under 30 lines of code, utilizes RTT to augment text 

datasets in a designated folder. As depicted in Figure 1, lines 12-16 compile all TXT files within 

the “data/” directory into a Python list object. Line 19 generates the “back translation” augmenter 

object. The program then opens the first text file in the “data/” directory, iterating through each 

line. It displays the original line and its back-translated version on the console for comparison 

and writes the augmented version to a new file with an “AUG_” prefix added to the original file 

name. 

Results and Evaluation 

To evaluate the program, the first and second chapters of Herman Melville’s classic novel 

Moby Dick were placed in the “data/” directory. Figures 2 – 4 exhibit the program’s output on 

the terminal as it processes each line in the text files. Upon completion of each file, the program 

informs the user and proceeds to the next file. The augmented text is written to new files with the 

“AUG_” prefix. Figures 5 – 6 display the original Moby Dick chapters alongside their 

augmented versions. For example, the first sentence in Figure 5 shows the word “Looming” 

altered to “Trouble is looming.” Although the “back translation” augmenter does not deliver 

flawless translations, it offers potential value for enhancing training data in natural language 

processing (NLP) tasks, such as enabling a chatbot to identify user input variations. To further 

improve the algorithm, the dataset could be augmented sentence-by-sentence instead of line-by-

line, since some sentences span multiple lines. 

Conclusion 
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This paper presented a Python program designed to augment any TXT file using back-

translation. The program iterates through all files with TXT extensions in its “data/” folder, 

processing each line-by-line and augmenting the content before displaying it on the console and 

saving it to a new text file. The paper also explored a range of text augmentation techniques, 

including synonym augmentation, semantic similarity augmentation, and round-trip translation 

(RTT). Furthermore, the NLPAug Python library and its diverse applications were discussed. 

Ultimately, the provided Python script successfully transformed any text dataset (i.e., TXT file) 

placed in its “data/” folder into an augmented version using RTT and the capabilities of the 

NLPAug library.  
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