
Running head: TEXT DATASET AUGMENTATION 1

OPTION #1: Text Dataset Augmentation

Scott Miner

Colorado State University – Global Campus

TEXT DATASET AUGMENTATION 2

Abstract

This paper presents a Python program that employs round-trip translation (RTT) for text

augmentation, expanding the dataset for natural language processing (NLP) tasks. The program

reads and augments each line of TXT files in the "data/" folder using the NLPAug Python

library's back-translation augmenter. We explore various text augmentation techniques, including

synonym augmentation, semantic similarity augmentation, and RTT. The effectiveness of the

program is demonstrated by augmenting the classic text, Moby Dick, and comparing the original

and back-translated versions side by side. The paper concludes that the RTT technique, while not

perfect, can be potentially useful for augmenting training data for NLP tasks, such as training

chatbots to recognize variations in user input.

TEXT DATASET AUGMENTATION 3

Figure 1. Screenshot of the program code, featuring the implementation of the 'augment_file' function

TEXT DATASET AUGMENTATION 4

Figure 2. Screenshot of program output displaying the augmented text of Chapter 1 from Moby Dick, with each line shown
sequentially in the console

TEXT DATASET AUGMENTATION 5

Figure 3. Screenshot of program output displaying the augmented text of Chapter 2 from Moby Dick, with each line shown
sequentially in the console.

TEXT DATASET AUGMENTATION 6

Figure 3. Screenshot of program output displaying the augmented text of Chapter 2 from Moby Dick, with each line shown
sequentially in the console.

TEXT DATASET AUGMENTATION 7

Figure 4. A side-by-side comparison of Moby Dick's Chapter 1: original text (left) and back-translated text (right) using the round-trip
translation augmentation technique.

Figure 5. A side-by-side comparison of Moby Dick's Chapter 2: original text (left) and back-translated text (right) using the round-trip
translation augmentation technique.

TEXT DATASET AUGMENTATION 8

Table of Contents

Text Dataset Augmentation for Natural Language Processing (NLP) ... 9

Synonym Augmentation ... 9

Semantic Similarity Augmentation ... 10

Back-Translation Augmentation ... 10

The NLPAug Python Library for Dataset Augmentation ... 11

Character Level Augmentation ... 11

Word and Flow Level Augmentation ... 11

The Back Translation Augmenter Program .. 11

Program Overview .. 12

Results and Evaluation .. 12

Conclusion .. 12

References ... 14

TEXT DATASET AUGMENTATION 9

OPTION #1: Text Dataset Augmentation

This paper presents a Python script designed to augment text datasets, effectively

expanding the available data for training. Marivate and Sefara (2020) note that numerous image

classification tasks have significantly benefited from data augmentation techniques. By altering

an image’s structure, these methods increase the number of training samples accessible to an

algorithm, enhancing the model’s resilience. However, applying similar augmentation techniques

to text datasets has been challenging, as some approaches demand a deeper understanding of the

language in question.

Text Dataset Augmentation for Natural Language Processing (NLP)

To address this issue, this paper explores various text augmentation techniques and

presents a Python script that employs round-trip translation (RTT) as an effective means of

augmenting text data. By applying this script to any text file within the “data/” folder, the user

can successfully expand their dataset while maintaining the integrity of the original information.

This improved augmentation approach has the potential to make a significant impact on the

development of more robust natural language processing models.

Synonym Augmentation

Marivate and Sefara (2020) classify text augmentation techniques into two primary

categories: those that operate on the text source and those that focus on text representation.

Ideally, textual data should be augmented by linguistic experts who can manually rephrase

sentences using language modeling rules. However, this approach can be costly and time-

consuming. An alternative method involves replacing words with synonyms, which falls under

the category of augmenting a text’s source.

WordNet, an open-source lexical database, is a valuable tool for implementing synonym-

based augmentation. It organizes English nouns, verbs, and adjectives into synonym sets or

TEXT DATASET AUGMENTATION 10

synsets, representing distinct lexical concepts, while also documenting the relationships between

these groups (Miller et al., 1990). Zhang et al. (2015) successfully employed WordNet to

augment training data, enabling a convolutional network to better understand textual input at the

character level.

Semantic Similarity Augmentation

Another approach highlighted by Marivate and Sefara (2020) is semantic similarity

augmentation, which focuses on modifying a text’s representation rather than its source. Unlike

synonym augmentation, this technique does not rely on dictionaries or thesauri. Instead, it

necessitates the use of pre-trained word embeddings or the creation of custom word embeddings.

Word embeddings are dense vector representations of words, generated through neural

network-inspired training methods (Levy & Goldberg, 2014). This method distinguishes itself

from the previous approach by utilizing distributed word representations to substitute words with

those found in similar contexts. In contrast, synonym augmentation depends on manually

maintained lexical databases, such as WordNet (Marivate & Sefara, 2020).

Back-Translation Augmentation

Marivate and Sefara (2020) also discuss round-trip translation (RTT), sometimes

referred to as bi-directional, back-and-forth, or recursive translation. This text augmentation

technique expands training data by translating a text into a foreign language and then translating

it back into the original language. For example, an English text might be translated into Spanish

and then translated back into English.

Somers (2005) explains that RTT is frequently employed to assess machine translation

(MT) systems. According to Anon (2003, as cited in Somers, 2005), the original English text

should ideally be identical to the back-translated English text. As a result, the round-trip process

TEXT DATASET AUGMENTATION 11

through a back translation engine can be used to evaluate the accuracy of the translated text and

the underlying model (Anon, 2005, as cited in Somers, 2005).

The NLPAug Python Library for Dataset Augmentation

The program presented in this paper employs the NLPAug Python library to augment any

text dataset stored in the “data/” directory. Nithilaau (2021) explains that NLPAug offers three

levels of augmentation: (a) character level, (b) word level, and (c) flow/sentence level.

Character Level Augmentation

Character level augmentation operates on individual characters within the text, making it

useful for applications like chatbot training data. Since user input to chatbots often contains

typos despite auto-correct features, the NLPAug library provides a “keyboard” augmenter that

simulates typographical errors by replacing characters with nearby ones on a keyboard.

Word and Flow Level Augmentation

Word level augmentations in the NLPAug library encompass various methods, including

“synonym,” “antonym,” “random,” “spelling,” and “split” augmenters. These augmenters

manipulate words within the text to create variations in the dataset. Lastly, flow level augmenters

such as “sequential” and “sometimes” target the overall structure of sentences or the order of text

elements.

The Back Translation Augmenter Program

The “back translation” augmenter is a word-level augmenter that leverages two

translation models for augmentation (Nlpaug.Augmenter.Word.Back_translation — Nlpaug

1.2.0dev Documentation, n.d.). In this paper’s implementation, English text datasets are

translated into German and then back to English. Among the various techniques discussed

earlier, round-trip translation (RTT) generates augmented text that closely resembles the original

content. RTT does not introduce spelling errors, random words, or antonyms into the text. Even

TEXT DATASET AUGMENTATION 12

“synonym” augmenters sometimes produced unexpected alterations in straightforward sentences.

Consequently, RTT was chosen because it provided the most coherent and consistent

augmentation results upon initial examination.

Program Overview

The provided function, spanning just under 30 lines of code, utilizes RTT to augment text

datasets in a designated folder. As depicted in Figure 1, lines 12-16 compile all TXT files within

the “data/” directory into a Python list object. Line 19 generates the “back translation” augmenter

object. The program then opens the first text file in the “data/” directory, iterating through each

line. It displays the original line and its back-translated version on the console for comparison

and writes the augmented version to a new file with an “AUG_” prefix added to the original file

name.

Results and Evaluation

To evaluate the program, the first and second chapters of Herman Melville’s classic novel

Moby Dick were placed in the “data/” directory. Figures 2 – 4 exhibit the program’s output on

the terminal as it processes each line in the text files. Upon completion of each file, the program

informs the user and proceeds to the next file. The augmented text is written to new files with the

“AUG_” prefix. Figures 5 – 6 display the original Moby Dick chapters alongside their

augmented versions. For example, the first sentence in Figure 5 shows the word “Looming”

altered to “Trouble is looming.” Although the “back translation” augmenter does not deliver

flawless translations, it offers potential value for enhancing training data in natural language

processing (NLP) tasks, such as enabling a chatbot to identify user input variations. To further

improve the algorithm, the dataset could be augmented sentence-by-sentence instead of line-by-

line, since some sentences span multiple lines.

Conclusion

TEXT DATASET AUGMENTATION 13

This paper presented a Python program designed to augment any TXT file using back-

translation. The program iterates through all files with TXT extensions in its “data/” folder,

processing each line-by-line and augmenting the content before displaying it on the console and

saving it to a new text file. The paper also explored a range of text augmentation techniques,

including synonym augmentation, semantic similarity augmentation, and round-trip translation

(RTT). Furthermore, the NLPAug Python library and its diverse applications were discussed.

Ultimately, the provided Python script successfully transformed any text dataset (i.e., TXT file)

placed in its “data/” folder into an augmented version using RTT and the capabilities of the

NLPAug library.

TEXT DATASET AUGMENTATION 14

References

Levy, O., & Goldberg, Y. (2014). Dependency-Based Word Embeddings. Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers), 302–308. https://doi.org/10.3115/v1/P14-2050

Marivate, V., & Sefara, T. (2020). Improving short text classification through global

augmentation methods. International Cross-Domain Conference for Machine Learning

and Knowledge Extraction, 385–399.

Ng, N., Yee, K., Baevski, A., Ott, M., Auli, M., & Edunov, S. (2019). Facebook FAIR”s

WMT19 News Translation Task Submission. ArXiv Preprint ArXiv:1907.06616.

Nithilaau. (2021, August 25). NLPAUG - A Python library to Augment Your Text Data.

Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/08/nlpaug-a-python-

library-to-augment-your-text-data/

nlpaug.augmenter.word.back_translation—Nlpaug 1.2.0dev documentation. (n.d.). Retrieved

September 19, 2021, from

https://nlpaug.readthedocs.io/en/latest/augmenter/word/back_translation.html

Somers, H. (2005). Round-trip translation: What is it good for? Proceedings of the Australasian

Language Technology Workshop 2005, 127–133.

Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text

classification. Advances in Neural Information Processing Systems, 28, 649–657.

https://doi.org/10.3115/v1/P14-2050
https://www.analyticsvidhya.com/blog/2021/08/nlpaug-a-python-library-to-augment-your-text-data/
https://www.analyticsvidhya.com/blog/2021/08/nlpaug-a-python-library-to-augment-your-text-data/
https://nlpaug.readthedocs.io/en/latest/augmenter/word/back_translation.html

	Text Dataset Augmentation for Natural Language Processing (NLP)
	Synonym Augmentation
	Semantic Similarity Augmentation
	Back-Translation Augmentation

	The NLPAug Python Library for Dataset Augmentation
	Character Level Augmentation
	Word and Flow Level Augmentation

	The Back Translation Augmenter Program
	Program Overview
	Results and Evaluation

	Conclusion
	References

