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Abstract 

This paper presents the development and implementation of a basic 2-layer Artificial 

Neural Network (ANN) that employs static backpropagation for predicting the next number in a 

given sequence. The ANN is constructed using the Python NumPy library and is adapted from 

existing code. The network's efficacy is evaluated using mean squared error (MSE) over 10,000 

training epochs, demonstrating its ability to learn patterns in various sequences. Future 

enhancements, including the incorporation of bias and alternative activation functions, are 

proposed to improve the model's performance and generalizability. 
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Figure 1. Constructor for the neural_network class 

 

Figure 2. Python code to create training and validation datasets from user input 
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Figure 3. The for loop that trains the ANN 

 

Figure 4. Additional functions of the neural_network class 
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Figure 5. Program instructions and user interface 
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Figure 6. Loss function decreasing over initial training epochs 

 

Figure 7. Loss function decreasing over final training epochs 



HAND-MADE SHALLOW ANN IN PYTHON  7 

 

Figure 8. Results after training the ANN over 10,000 epochs on the sequence from 1 to 10 by 1 
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Figure 9. Results after training the ANN over 10,000 epochs on the sequence from 115 to 65 by 5 
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Figure 10. Results after training the ANN over 10,000 epochs on the Fibonacci sequence 
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Option #1: Hand-Made Shallow ANN in Python 

Artificial Neural Networks (ANNs) have been widely used in various domains, including 

finance, marketing, information systems, manufacturing, operations, and medical data 

classification tasks (Dreiseitl & Ohno-Machado, 2002; Sharda et al., 2020). Gupta (2013) 

describes ANNs as “massively parallel computing systems consisting of an extremely large 

number of simple processors with many interconnections” (p. 24). This paper discusses the 

development and implementation of a basic 2-layer ANN that uses static backpropagation to 

predict the next number in a given sequence. The network is built using the Python NumPy 

library and is based on a modification of existing code provided by Shamdasani (2020). 

ANN Structure and Components 

The implemented ANN consists of three primary components: an input layer with two 

neurons, a hidden layer with three neurons, and an output layer with one neuron. Additionally, 

weights between the layers are included to facilitate forward propagation. 

The input layer receives data in the form of a matrix and converts each number in the 

user-input sequence into a pair of x and y coordinates. The network uses forward-propagation to 

process the input data by multiplying the input layer by a series of randomly generated weights 

and applying the sigmoid activation function to each hidden layer. The output layer returns a 

prediction, which is then compared to the actual value. The error between the predicted and 

actual values is used to populate the loss function, which in turn is utilized to adjust the weights 

using backpropagation. 

Data Processing and Training 

The ANN preprocesses the input data by transforming it and splitting it into training 

(80%) and validation (20%) datasets. During the training phase, the network uses matrix 
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multiplication to multiply the input layer by a series of randomly generated weights, applies the 

sigmoid activation function for every hidden layer, returns an output, calculates the error and 

gradient descent to populate the loss function, and uses the loss function to adjust the weights. 

The network is trained over a minimum of 1,000 epochs. 

The program uses the mean squared error (MSE) to calculate the loss, which is the 

average of the squared differences between the predicted and actual values. A perfect value is 

0.0, and the result is always positive regardless of the signs of the predicted and actual values 

(Brownlee, 2019). 

Backpropagation 

The ANN utilizes backpropagation to train the network. The backward() method 

calculates the error between the predicted and output values and computes the derivative of the 

sigmoid function on the predicted result, which is then multiplied by the error to create a delta. 

The ANN uses matrix multiplication on the delta matrix and weight matrix to determine how 

much the weights of the hidden layer contributed to the output error, producing a second delta. 

The model uses these deltas to adjust the weight matrices after each epoch. The larger the delta, 

the more the model adjusts the weights to minimize the error (Richmond, 2017). 

This iterative process allows the ANN to fine-tune the weights between the layers, 

ultimately leading to more accurate predictions. By repeating this process for a user-specified 

number of epochs, the ANN can learn the underlying patterns in the input data and make better 

predictions for unseen data. As the network continues to train and the errors decrease, the model 

converges to an optimal set of weights that minimize the overall loss, as measured by the mean 

squared error (MSE). 

Prediction and Validation 
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Once the model is trained, the weights it has learned to minimize the MSE are saved to 

two text files: w1.txt and w2.txt. These weights are then used to create predictions on the 

validation data. As described, the program splits the input data into two sets: 80% training and 

20% validation. Therefore, the model’s prediction for the final number in the user-input 

sequence will not occur until the ANN completes training and the program calls the predict() 

method using the validation dataset. 

Results 

The ANN’s performance was evaluated on three different sequences of data: (a) the 

numbers 1 through 10 increasing by 1, (b) the numbers 115 through 65 decreasing by 5, and (c) 

the first 20 digits of the Fibonacci sequence. The results show that the ANN is comparatively 

better at predicting incremental and decremental patterns over the Fibonacci sequence. 

Conclusion and Future Work 

In conclusion, this paper discussed the development and implementation of a basic 2-

layer ANN that uses static backpropagation to predict the next number in a given sequence. The 

network is built using the Python NumPy library and is based on a modification of existing code 

provided by Shamdasani (2020). The ANN’s performance was analyzed using mean squared 

error (MSE) over 10,000 training epochs. 

Future improvements to the model include adding the bias and incorporating additional 

activation functions, such as Rectified Linear Activation (ReLU) and Hyperbolic Tangent (Tanh) 

(Brownlee, 2021). These enhancements can help improve the network’s performance and 

generalizability, potentially making it suitable for a wider range of sequence prediction tasks. 
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