Running head: HAND-MADE SHALLOW ANN IN PYTHON

Option #1: Hand-Made Shallow ANN in Python
Scott Miner

Colorado State University — Global Campus



HAND-MADE SHALLOW ANN IN PYTHON

Abstract
This paper presents the development and implementation of a basic 2-layer Artificial
Neural Network (ANN) that employs static backpropagation for predicting the next number in a
given sequence. The ANN is constructed using the Python NumPy library and is adapted from
existing code. The network's efficacy is evaluated using mean squared error (MSE) over 10,000
training epochs, demonstrating its ability to learn patterns in various sequences. Future
enhancements, including the incorporation of bias and alternative activation functions, are

proposed to improve the model's performance and generalizability.



HAND-MADE SHALLOW ANN IN PYTHON

1 import math

2 import numpy as np

3 from sklearn.preprocessing import MinMaxScaler

4

5 PCT_TRAINING = 80

6 EPOCHS = 1000

4

8 =class neural_network(object):

9 def __init_ (self):

10 #parameters
11 self.inputLayerSize = 2
12 self.outputLayerSize = 1
13 self.hiddenLayerSize = 3

14

15 #weights
16 # weight matrix of dimension (size of layer 1, size of layer 1-1)
17
18 # weight matrix from input to hidden layer
19 self.Wl = np.random.randn(self.inputLayerSize, self.hiddenLayerSize)
20 # weight matrix from hidden to output layer
21 || self.W2 = np.random.randn(self.hiddenLayerSize, self.outputlLayerSize)

Figure 1. Constructor for the neural_network class

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
921
92

94
95

97
98

Lo
o1
102
o3
Lo4
LO5
106

# sequence is the user input
seq = [int(x) for x in input('Input a series of numbers separated by spaces (Press enter when done): ').split()]

# create record id
int_id = list(range(len(seq)))

# create matrix

sequence_of_integers = np.column_stack((int_id, seq))

# slice matrix on second value

follow_up_sequence = sequence_of_integers[1:,1]

follow_up_sequence np.array(follow_up_sequence)

follow_up_sequence = follow_up_sequence.reshape(follow_up_sequence.shape[@],-1)

# all x and y
x_all_orig = np.array((sequence_of_integers), dtype=float)
y_orig = np.array((follow_up_sequence), dtype=float) # output

# scale all x and y

scaler_x = MinMaxScaler()

scaler_y = MinMaxScaler()

x_all_trans = scaler_x.fit_transform(x_all_orig)
y_trans = scaler_y.fit_transform(y_orig)

# split data
num_rows = np.shape(x_all _trans)[e]
splitPoint = math.trunc(num_rows * (PCT_TRAINING / 1090))

# create training and validation data sets using split point
X_train = np.split(x_all trans, [splitPoint])[@]
x_validation = np.split(x_all trans, [splitPoint])[1]
y_to_pass_to_train_function = y trans[:splitPoint,:]

Figure 2. Python code to create training and validation datasets from user input




HAND-MADE SHALLOW ANN IN PYTHON 4

111 |sfor i in range(EPOCHS): # trains the nn
112 print("# " + str(i) + "\n")

113 print("Training Data Input: \n" + str(scaler_x.inverse_transform(X_train)))

114 print(“Training Data Output: \n" + str(scaler_y.inverse_transform(y_to_pass_to_train_function)))
115 print("Training Data Predicted Output: \n" + str(scaler_y.inverse_transform(nn.forward(X_train))))
116

117 # mean squared error

118 print("Loss: \n" + str(np.mean(np.square(y_to_pass_to_train_function - nn.forward(X_train)))))

119 print("\n")

120 nn.train(X_train, y_to_pass_to_train_function)

121

122  nn.saveWeights()
123 nn.predict()

Figure 3. The for loop that trains the ANN

29 def forward(self, X):

30 # forward propagation through our network

31 # dot product of X (input) and first set of weights and bias

32 self.z = np.dot(X, self.Wl)

33 # activation function

34 self.z2 = self.sigmoid(self.z)

35 # dot product of hidden layer (z2) and second set of weights and bias

36 self.z3 = np.dot(self.z2, self.W2)

37 # final activation function

38 o = self.sigmoid(self.z3)

39 return o

40

41 def backward(self, X, y, 0):

42 # backward propagate through the network

43 # error in output

44 self.o_error =y - 0

45 # applying derivative of sigmoid to error

46 self.o_delta = self.o_error*self.sigmoidPrime(o)

47

48 self.z2_error = self.o_delta.dot(self.W2.T) # z2 error: how much our hidden layer weights contributed to output error
49 self.z2_delta = self.z2_error*self.sigmoidPrime(self.z2) # applying derivative of sigmoid to z2 error
50

51 self.Wl += X.T.dot(self.z2_delta) # adjusting first set (input --> hidden) weights
52 self.W2 += self.z2.T.dot(self.o_delta) # adjusting second set (hidden --> output) weights
53

54 - def sigmoid(self, s):

55 # activation function

56 return 1/(1+np.exp(-s))

57

58 def sigmoidPrime(self, s):

59 #derivative of sigmoid

60 return s * (1 - s)

61

62 def train(self, X, y):

63 o = self.forward(X)

64 self.backward(X, y, 0)

65

66 - def predict(self):

67 print("Predicted data based on trained weights: ")

68 print('validation Data Input: \n' + str(scaler_x.inverse_transform(x_validation)))
69 #print("Input (scaled): \n" + str(x_validation))

70 print("validation Data Output: \n" + str(scaler_y.inverse_transform(self.forward(x_validation))))

Figure 4. Additional functions of the neural_network class



HAND-MADE SHALLOW ANN IN PYTHON

DEBUG CONSOLE AZURE TERMINAL PROBLEMS GITLENS SQL SERVER SQL CONSOLE QUTPUT

stk ok o ok ok ok o o sk o K o o Kok e o o o ok s o o ok o ok sk sk Rk s o Rk s o o sk ok ok ok ok sk o ks o sk s o R ok e ok ko o ok sk ok ok sk ok sk sk ook sk ok ok ok
* *
*  ARTIFICIAL NEURAL NETWORK (ANN) FOR PREDICTING THE NEXT NUMBER IN A SEQUENCE

* *
KKK K KK 3K K KK K KKK 3 K 5K S o KK o 3K K oK 3 3K 5K oK 33K 5K 3K 3K 3K 3K 3K o 3K 5K o 3 K 5K 3 33K oK 3K 5K 3K 33K 3K o K 5K o o KoK o 3K 3K oK 3 K 5K 3K 3K K KK oK oK oK K oK

Source:
The program is inspired by and modifies the source code available at:
https://enlight.nyc/projects/neural-network

e 2k 2k 2k e 2k 2k 2k 2k ok e 2k 2k ok e sk 2k 2k ok sk ok e 2k ok ok ok 2k 2k ok ok ke 2k sk ok sk ok 2k 2k 3k ok e 2k 2k ok e ok 2k 2k 2k ok 3k 2k 3k e sk 2k 2k 2k sk ol sk 2k ok 3k sk ok 2k 2k sk ok e ok sk ok ok ok sk ok ok ok kK k ok

* User Input:

&3 Enter a sequence of numbers separated by spaces (e.g., 6 8 10 12 14 16 18)
and press 'Enter'. The ANN will attempt to predict the next number in the
sequence based on the input.

Default Parameters:
Training Epochs = 10,000
Training Data 80%
Validation Data = 20%

ANN Structure:
1. Input Layer: Neurons (X, N)
2. Hidden Layer: Neurons (Configurable)
3. Output Layer: Neuron (Prediction)

Activation Function: Sigmoid
Loss Function: Mean Square Error (MSE)

¥ X X X X X X X X X X X X X ¥ %X %X %

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

e ok e ok s ok sk ok sk sk sk sk ok sk ke ke ke sk sk ok sk sk sk sk ok sk ok sk ok ke ok ke ok ok sk sk sk sk ke sk ok sk ok ke ok e ok e ok sk sk sk sk sk ke sk sk sk e sk sk sk ok sk sk sk sk sk sk ok ke ok ke ok e ok sk sk sk sk sk kskokk ok

* Overview:

& This program uses an Artificial Neural Network (ANN) to predict the next
number in a sequence based on the user's input. The ANN consists of three
layers: an input layer, a hidden layer, and an output layer. The input layer
has 2 neurons, the hidden layer has a default of 3 neurons (configurable), and
the output layer has 1 neuron that represents the prediction.

During the training process, the ANN performs forward and backward
propagation to adjust its weights based on the input data. It uses the
Sigmoid activation function for hidden layers during forward-propagation and
its derivative during backward-propagation.

The Mean Square Error (MSE) loss function is used to evaluate the performance
of the ANN during training. After a specified number of training epochs
(iterations), the ANN uses the trained weights to make predictions based on
validation data.

¥ K K K K X X K K K K K X X ¥
¥ X X X X X X X X X X X X X X ¥ ¥

e 2k ke 2k 2k ok 2k 2k ok 2k ok 2k 2k sk e ke ke 2k ok 2k ok sk 2k sk 2k ke ok sk ok e ok 2k ok 2k 2k 2k 2k ok ke 2k 2k 2k ok e ke e ok ke ok ok 2k ok 2k e ke ok sk ke ke ok ke ok ok ok ok sk ok sk ok ke ok e ok ke ok sk ok sk ke kR kR k ok

Input a series of numbers separated by spaces (Press enter when done): D

Figure 5. Program instructions and user interface



HAND-MADE SHALLOW ANN IN PYTHON

Loss:
0.0010934455535278448

Loss:
0.09384310207499437

0.08217468468829736
# 6

Loss:
.08165678429518225

0.08020627297659536
# 10

Loss:
0.07970886937033285

0.07919477222459606
# 12

Loss:
0.07866028341734763
# 13

Loss:
0.07810201433557298
# 14

0.0010916021156183121

Figure 6. Loss function decreasing over initial training epochs Figure 7. Loss function decreasing over final training epochs



HAND-MADE SHALLOW ANN IN PYTHON

Training Data Predicted Output:
.49768912]
.96462118]
.74540422]
.84363453]
.08969793]
.22899977]
- 10503762 |
.70817601]1]

Predicted data based on trained weights:
Validation Data Input:
[[ 8. 9.]
[ 9. 10.1]
vValidation Data Output:
[[9.10158918]
[9.35438224]]

Figure 8. Results after training the ANN over 10,000 epochs on the sequence from 1 to 10 by 1



HAND-MADE SHALLOW ANN IN PYTHON

# 9999

Training Data Input:

LL

11

.11

Training Data Predicted Output:
[[107.89662545]

[105.27941979]

[100.97666987]

[ 95.45941631]

[ 89.63240384]

[ 84.22552793]

[ 79.62682534]

[ 75.9661034 ]]
Loss:
0.00046140471201572026
Predicted data based on trained weights:
validation Data Input:
BE8 -2 75.]

[ 9. 70.]

a6 5 =i ]
validation Data Output:
[[73:202915011

[71.19870792]

Figure 9. Results after training the ANN over 10,000 epochs on the sequence from 115 to 65 by 5



HAND-MADE SHALLOW ANN IN PYTHON

# 9999

raining Data Input:
: 0-

LL

144.
2338
377.
610.
aining Data Output:

]
-
-]
-]
-]
-
-]
-
-]
-
-]
-]

]

]

]

L | | s | e | e { s ¥ s ¥ e ¥ s ¥ s | s M N s { s s { s ¥ s ¥ s T s ¥ s | s s s { s | s | s L e |
—
—

L
N
w
w

I
w =
~N Y
~N £
e

[610.
[987.1]
raining Data Predicted Output:
.33851036]
.66400069]
.28891918]
.47680738]
.6660345 ]
.59723615]
.4124536 ]
.83931072]
.32630551]
.28246154]
.33874514]
.89109554]
[280.92391891]
[420.0960474 1]
[618.66119726]
[890.9542758 1]
LosS:
5.963651268445116e-05
Predicted data based on trained weights:
Validation Data Input:
[[ 16. 987.]
[ 17. 1597.]
[ 18. 2584.]
[ 19. 4181.]]
Validation Data Predicted oOutput:
[[1231.30462006]
[1588.52499736]
[1874.29145802]
[2031.07140088]]
Press any key to continue

| s | s | | s { s | s [ | s | ey | e |

[ | |
IRy
0 =
E Vo]

Figure 10. Results after training the ANN over 10,000 epochs on the Fibonacci sequence



HAND-MADE SHALLOW ANN IN PYTHON 10

Table of Contents
AADSTIACT ... bbbt E et 2
Option #1: Hand-Made Shallow ANN in PYthON .........cccoiiiiiiiccecc e 11
ANN Structure and COMPONENES ......c.eiveiieie ettt sre e raesaeaeesreesreenee e 11
Data Processing and TraiNiNg ......c.ccveiieieiieieeiesieeseesee e seeae e sraesseasaessaestesssessaessesnsessaessens 11
B F T (o1 (0] o= 1o - LA o] o USROS 12
Prediction and Validation ... 12
RESUIES ..ttt bbbt 13



HAND-MADE SHALLOW ANN IN PYTHON 11

Option #1: Hand-Made Shallow ANN in Python

Artificial Neural Networks (ANNSs) have been widely used in various domains, including
finance, marketing, information systems, manufacturing, operations, and medical data
classification tasks (Dreiseitl & Ohno-Machado, 2002; Sharda et al., 2020). Gupta (2013)
describes ANNs as “massively parallel computing systems consisting of an extremely large
number of simple processors with many interconnections” (p. 24). This paper discusses the
development and implementation of a basic 2-layer ANN that uses static backpropagation to
predict the next number in a given sequence. The network is built using the Python NumPy
library and is based on a modification of existing code provided by Shamdasani (2020).

ANN Structure and Components

The implemented ANN consists of three primary components: an input layer with two
neurons, a hidden layer with three neurons, and an output layer with one neuron. Additionally,
weights between the layers are included to facilitate forward propagation.

The input layer receives data in the form of a matrix and converts each number in the
user-input sequence into a pair of x and y coordinates. The network uses forward-propagation to
process the input data by multiplying the input layer by a series of randomly generated weights
and applying the sigmoid activation function to each hidden layer. The output layer returns a
prediction, which is then compared to the actual value. The error between the predicted and
actual values is used to populate the loss function, which in turn is utilized to adjust the weights
using backpropagation.

Data Processing and Training
The ANN preprocesses the input data by transforming it and splitting it into training

(80%) and validation (20%) datasets. During the training phase, the network uses matrix



HAND-MADE SHALLOW ANN IN PYTHON 12

multiplication to multiply the input layer by a series of randomly generated weights, applies the
sigmoid activation function for every hidden layer, returns an output, calculates the error and
gradient descent to populate the loss function, and uses the loss function to adjust the weights.
The network is trained over a minimum of 1,000 epochs.

The program uses the mean squared error (MSE) to calculate the loss, which is the
average of the squared differences between the predicted and actual values. A perfect value is
0.0, and the result is always positive regardless of the signs of the predicted and actual values
(Brownlee, 2019).

Backpropagation

The ANN utilizes backpropagation to train the network. The backward() method
calculates the error between the predicted and output values and computes the derivative of the
sigmoid function on the predicted result, which is then multiplied by the error to create a delta.
The ANN uses matrix multiplication on the delta matrix and weight matrix to determine how
much the weights of the hidden layer contributed to the output error, producing a second delta.
The model uses these deltas to adjust the weight matrices after each epoch. The larger the delta,
the more the model adjusts the weights to minimize the error (Richmond, 2017).

This iterative process allows the ANN to fine-tune the weights between the layers,
ultimately leading to more accurate predictions. By repeating this process for a user-specified
number of epochs, the ANN can learn the underlying patterns in the input data and make better
predictions for unseen data. As the network continues to train and the errors decrease, the model
converges to an optimal set of weights that minimize the overall loss, as measured by the mean
squared error (MSE).

Prediction and Validation



HAND-MADE SHALLOW ANN IN PYTHON 13

Once the model is trained, the weights it has learned to minimize the MSE are saved to
two text files: wl.txt and w2.txt. These weights are then used to create predictions on the
validation data. As described, the program splits the input data into two sets: 80% training and
20% validation. Therefore, the model ’s prediction for the final number in the user-input
sequence will not occur until the ANN completes training and the program calls the predict()
method using the validation dataset.

Results

The ANN'’s performance was evaluated on three different sequences of data: (a) the
numbers 1 through 10 increasing by 1, (b) the numbers 115 through 65 decreasing by 5, and (c)
the first 20 digits of the Fibonacci sequence. The results show that the ANN is comparatively
better at predicting incremental and decremental patterns over the Fibonacci sequence.

Conclusion and Future Work

In conclusion, this paper discussed the development and implementation of a basic 2-
layer ANN that uses static backpropagation to predict the next number in a given sequence. The
network is built using the Python NumPy library and is based on a modification of existing code
provided by Shamdasani (2020). The ANN ’s performance was analyzed using mean squared
error (MSE) over 10,000 training epochs.

Future improvements to the model include adding the bias and incorporating additional
activation functions, such as Rectified Linear Activation (ReLU) and Hyperbolic Tangent (Tanh)
(Brownlee, 2021). These enhancements can help improve the network’s performance and

generalizability, potentially making it suitable for a wider range of sequence prediction tasks.



HAND-MADE SHALLOW ANN IN PYTHON 14

References
Brownlee, J. (2019, January 27). Loss and Loss Functions for Training Deep Learning Neural

Networks. Machine Learning Mastery. https://machinelearningmastery.com/loss-and-

loss-functions-for-training-deep-learning-neural-networks/

Brownlee, J. (2021, January 17). How to Choose an Activation Function for Deep Learning.

Machine Learning Mastery. https://machinelearningmastery.com/choose-an-activation-

function-for-deep-learning/

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network
classification models: A methodology review. Journal of Biomedical Informatics, 35(5),

352-359. https://doi.org/10.1016/S1532-0464(03)00034-0

Gupta, N. (2013). Artificial neural network. Network and Complex Systems, 3(1), 24-28.
Richmond, A. (2017, January 31). A Neural Network in Python, Part 1: Sigmoid function,

gradient descent & backpropagation. Alan Richmond. https://tuxar.uk/neural-network-

python-part-1-sigmoid-function-gradient-descent-backpropagation/

Shamdasani, S. (2020, May 6). Build a Neural Network with Python.

https://enlight.nyc/projects/neural-network

Sharda, R., Delen, D., & Turban, E. (2020). Analytics, data science, & artificial intelligence

(Eleventh edition). Pearson.


https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://doi.org/10.1016/S1532-0464(03)00034-0
https://tuxar.uk/neural-network-python-part-1-sigmoid-function-gradient-descent-backpropagation/
https://tuxar.uk/neural-network-python-part-1-sigmoid-function-gradient-descent-backpropagation/
https://enlight.nyc/projects/neural-network

