
Running head: HAND-MADE SHALLOW ANN IN PYTHON 1

Option #1: Hand-Made Shallow ANN in Python

Scott Miner

Colorado State University – Global Campus

HAND-MADE SHALLOW ANN IN PYTHON 2

Abstract

This paper presents the development and implementation of a basic 2-layer Artificial

Neural Network (ANN) that employs static backpropagation for predicting the next number in a

given sequence. The ANN is constructed using the Python NumPy library and is adapted from

existing code. The network's efficacy is evaluated using mean squared error (MSE) over 10,000

training epochs, demonstrating its ability to learn patterns in various sequences. Future

enhancements, including the incorporation of bias and alternative activation functions, are

proposed to improve the model's performance and generalizability.

HAND-MADE SHALLOW ANN IN PYTHON 3

Figure 1. Constructor for the neural_network class

Figure 2. Python code to create training and validation datasets from user input

HAND-MADE SHALLOW ANN IN PYTHON 4

Figure 3. The for loop that trains the ANN

Figure 4. Additional functions of the neural_network class

HAND-MADE SHALLOW ANN IN PYTHON 5

Figure 5. Program instructions and user interface

HAND-MADE SHALLOW ANN IN PYTHON 6

Figure 6. Loss function decreasing over initial training epochs

Figure 7. Loss function decreasing over final training epochs

HAND-MADE SHALLOW ANN IN PYTHON 7

Figure 8. Results after training the ANN over 10,000 epochs on the sequence from 1 to 10 by 1

HAND-MADE SHALLOW ANN IN PYTHON 8

Figure 9. Results after training the ANN over 10,000 epochs on the sequence from 115 to 65 by 5

HAND-MADE SHALLOW ANN IN PYTHON 9

Figure 10. Results after training the ANN over 10,000 epochs on the Fibonacci sequence

HAND-MADE SHALLOW ANN IN PYTHON 10

Table of Contents

Abstract ... 2

Option #1: Hand-Made Shallow ANN in Python ... 11

ANN Structure and Components .. 11

Data Processing and Training ... 11

Backpropagation ... 12

Prediction and Validation ... 12

Results ... 13

Conclusion and Future Work .. 13

HAND-MADE SHALLOW ANN IN PYTHON 11

Option #1: Hand-Made Shallow ANN in Python

Artificial Neural Networks (ANNs) have been widely used in various domains, including

finance, marketing, information systems, manufacturing, operations, and medical data

classification tasks (Dreiseitl & Ohno-Machado, 2002; Sharda et al., 2020). Gupta (2013)

describes ANNs as “massively parallel computing systems consisting of an extremely large

number of simple processors with many interconnections” (p. 24). This paper discusses the

development and implementation of a basic 2-layer ANN that uses static backpropagation to

predict the next number in a given sequence. The network is built using the Python NumPy

library and is based on a modification of existing code provided by Shamdasani (2020).

ANN Structure and Components

The implemented ANN consists of three primary components: an input layer with two

neurons, a hidden layer with three neurons, and an output layer with one neuron. Additionally,

weights between the layers are included to facilitate forward propagation.

The input layer receives data in the form of a matrix and converts each number in the

user-input sequence into a pair of x and y coordinates. The network uses forward-propagation to

process the input data by multiplying the input layer by a series of randomly generated weights

and applying the sigmoid activation function to each hidden layer. The output layer returns a

prediction, which is then compared to the actual value. The error between the predicted and

actual values is used to populate the loss function, which in turn is utilized to adjust the weights

using backpropagation.

Data Processing and Training

The ANN preprocesses the input data by transforming it and splitting it into training

(80%) and validation (20%) datasets. During the training phase, the network uses matrix

HAND-MADE SHALLOW ANN IN PYTHON 12

multiplication to multiply the input layer by a series of randomly generated weights, applies the

sigmoid activation function for every hidden layer, returns an output, calculates the error and

gradient descent to populate the loss function, and uses the loss function to adjust the weights.

The network is trained over a minimum of 1,000 epochs.

The program uses the mean squared error (MSE) to calculate the loss, which is the

average of the squared differences between the predicted and actual values. A perfect value is

0.0, and the result is always positive regardless of the signs of the predicted and actual values

(Brownlee, 2019).

Backpropagation

The ANN utilizes backpropagation to train the network. The backward() method

calculates the error between the predicted and output values and computes the derivative of the

sigmoid function on the predicted result, which is then multiplied by the error to create a delta.

The ANN uses matrix multiplication on the delta matrix and weight matrix to determine how

much the weights of the hidden layer contributed to the output error, producing a second delta.

The model uses these deltas to adjust the weight matrices after each epoch. The larger the delta,

the more the model adjusts the weights to minimize the error (Richmond, 2017).

This iterative process allows the ANN to fine-tune the weights between the layers,

ultimately leading to more accurate predictions. By repeating this process for a user-specified

number of epochs, the ANN can learn the underlying patterns in the input data and make better

predictions for unseen data. As the network continues to train and the errors decrease, the model

converges to an optimal set of weights that minimize the overall loss, as measured by the mean

squared error (MSE).

Prediction and Validation

HAND-MADE SHALLOW ANN IN PYTHON 13

Once the model is trained, the weights it has learned to minimize the MSE are saved to

two text files: w1.txt and w2.txt. These weights are then used to create predictions on the

validation data. As described, the program splits the input data into two sets: 80% training and

20% validation. Therefore, the model’s prediction for the final number in the user-input

sequence will not occur until the ANN completes training and the program calls the predict()

method using the validation dataset.

Results

The ANN’s performance was evaluated on three different sequences of data: (a) the

numbers 1 through 10 increasing by 1, (b) the numbers 115 through 65 decreasing by 5, and (c)

the first 20 digits of the Fibonacci sequence. The results show that the ANN is comparatively

better at predicting incremental and decremental patterns over the Fibonacci sequence.

Conclusion and Future Work

In conclusion, this paper discussed the development and implementation of a basic 2-

layer ANN that uses static backpropagation to predict the next number in a given sequence. The

network is built using the Python NumPy library and is based on a modification of existing code

provided by Shamdasani (2020). The ANN’s performance was analyzed using mean squared

error (MSE) over 10,000 training epochs.

Future improvements to the model include adding the bias and incorporating additional

activation functions, such as Rectified Linear Activation (ReLU) and Hyperbolic Tangent (Tanh)

(Brownlee, 2021). These enhancements can help improve the network’s performance and

generalizability, potentially making it suitable for a wider range of sequence prediction tasks.

HAND-MADE SHALLOW ANN IN PYTHON 14

References

Brownlee, J. (2019, January 27). Loss and Loss Functions for Training Deep Learning Neural

Networks. Machine Learning Mastery. https://machinelearningmastery.com/loss-and-

loss-functions-for-training-deep-learning-neural-networks/

Brownlee, J. (2021, January 17). How to Choose an Activation Function for Deep Learning.

Machine Learning Mastery. https://machinelearningmastery.com/choose-an-activation-

function-for-deep-learning/

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network

classification models: A methodology review. Journal of Biomedical Informatics, 35(5),

352–359. https://doi.org/10.1016/S1532-0464(03)00034-0

Gupta, N. (2013). Artificial neural network. Network and Complex Systems, 3(1), 24–28.

Richmond, A. (2017, January 31). A Neural Network in Python, Part 1: Sigmoid function,

gradient descent & backpropagation. Alan Richmond. https://tuxar.uk/neural-network-

python-part-1-sigmoid-function-gradient-descent-backpropagation/

Shamdasani, S. (2020, May 6). Build a Neural Network with Python.

https://enlight.nyc/projects/neural-network

Sharda, R., Delen, D., & Turban, E. (2020). Analytics, data science, & artificial intelligence

(Eleventh edition). Pearson.

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://doi.org/10.1016/S1532-0464(03)00034-0
https://tuxar.uk/neural-network-python-part-1-sigmoid-function-gradient-descent-backpropagation/
https://tuxar.uk/neural-network-python-part-1-sigmoid-function-gradient-descent-backpropagation/
https://enlight.nyc/projects/neural-network

