
Running head: NAIVE BAYES CLASSIFIER 1

Option #1: Naive Bayes Classifier

Scott Miner

Colorado State University – Global Campus

NAIVE BAYES CLASSIFIER 2

Abstract

This paper presents a simple Naïve Bayes classifier implemented in Python using the

scikit-learn package, designed to predict the likelihood of playing golf on a given day based on

the weather outlook. The classifier addresses the zero-probability problem by employing the

Laplacian correction technique. It then converts the dataset into a frequency table and creates a

"likelihood" table by computing the relevant probabilities. Subsequently, the classifier calculates

the posterior probabilities for each class. To ensure accuracy, the paper verifies the output of the

classifier using manual calculations in Excel.

NAIVE BAYES CLASSIFIER 3

Figure 1. The dataset before Laplace correction

Figure 2. The dataset after the Laplace transformation

NAIVE BAYES CLASSIFIER 4

Figure 3. Frequency table showing the crosstab of the feature and target variables

Figure 4. Likelihood table of the feature and target variables

Figure 5. Posterior probability calculations

Figure 6. Predictions produced by the Naïve Bayes classifier based on its input data

NAIVE BAYES CLASSIFIER 5

Figure 7. The output of the Python script verified in Excel

NAIVE BAYES CLASSIFIER 6

Table of Contents

Abstract ... 2

Table of Contents .. 6

Option #1: Naive Bayes Classifier .. 7

Problem Definition.. 7

Laplacian Correction ... 8

Creating the Frequency and Likelihood Tables .. 8

Calculating the Posterior Probabilities.. 8

Handling Multiple Features .. 10

Conclusion .. 10

NAIVE BAYES CLASSIFIER 7

Option #1: Naive Bayes Classifier

 Sharda et al. (2020) define Naïve Bayes as a machine-learning technique derived from

Bayes’ theorem. Bayes’ theorem is defined as follows: 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑×𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
. We define

the posterior as P(H | E), the probability of a hypothesis, H, given some evidence, E.

Likewise, we define the likelihood as P(E | H), the probability of the evidence given some

hypothesis. We denote the prior as P(H), the probability of the hypothesis. Finally, we

denote the probability of the evidence as P(E).

Problem Definition

In this paper, we examine a simple problem using a sample dataset containing 14

observations and three features: (a) a sequential number representing the day each observation

was recorded, (b) the categorical variable containing the weather outlook for that day (i.e.,

raining, overcast, or sunny), and (c) the target variable, indicating whether we played golf on that

day (i.e., yes or no). The problem we are trying to solve is predicting whether we will play golf

on any given day, given that day’s weather outlook, which is the evidence in this scenario.

Predicting whether we will play golf represents the hypothesis.

Addressing the Zero-Probability Problem

However, given this dataset and the nature of Naïve Bayes classifiers, the possibility of

something known as the zero-probability problem arises. The zero-probability problem occurs

when there is no condition for a given scenario in our training data, which causes the probability

of that scenario to be reduced to zero if it occurs in our test data. One technique to overcome this

problem is Laplacian correction, a smoothing technique (Navlani, 2018). Cherian (2017)

describes smoothing techniques as those that attempt to capture important patterns in data while

NAIVE BAYES CLASSIFIER 8

avoiding “fine-scale structures/rapid phenomena” (p. 71). Additionally, Spiegel (1965) defines

the Laplace transform as an essential component of scientists’ mathematical background and an

effective means to solve many problems arising in various fields of science and engineering.

Laplacian Correction

To perform a Laplace transformation of a dataset, we add records for all the various

scenarios that could occur within our training data (Navlani, 2018). For example, in Figure 1, the

training dataset does not contain any record where we do not play golf when it is overcast.

Therefore, we add a record for each possible scenario that could exist within our training data

(Pieter Abbeel, 2012). Figure 2 shows the dataset after applying the Laplacian correction. We

have added a record for each possible combination of scenarios that may exist in the training

data, adding a total of six records, which increases the record count from 14 to 20 and eliminates

the zero-probability problem.

Creating the Frequency and Likelihood Tables

The next step is to create a frequency table using these updated counts. Figure 3 shows

the frequency table that the Python script creates. The frequencies are simply the number of

times a condition and outcome occur together. To create a likelihood table, we divide each

frequency by the total number of frequencies in each category of the target variable (i.e., yes or

no). Figure 4 shows the likelihood of the weather outlook, given that we played golf on that day

(i.e., P(E | H)). Additionally, the column and row totals in this table allow us to calculate the

priors: (a) P(H) (i.e., the likelihood that we played golf) and (b) P(E) (i.e., the likelihood of the

weather outlook).

Calculating the Posterior Probabilities

NAIVE BAYES CLASSIFIER 9

With the likelihood table and priors determined, we can plug these values into Bayes’

theorem to compute the posterior probabilities (i.e., “What is the probability that we played golf

given a certain weather outlook?”). Figure 5 displays the posterior probabilities for each category

of the predictor and target variables (i.e., P(H | E) = P(Yes | Rainy)). The model’s final

prediction is determined by whether the probability is higher for the “Yes” or “No” class. For

instance, the model predicts that we do not play golf when the weather is rainy because P(No |

Rainy) > P(Yes | Rainy) (i.e., 0.57 > 0.43). Figure 6 presents the predictions output by the model

for each category of the outlook variable. When the weather is overcast and sunny, the model

predicts we will play golf. However, when the weather is rainy, the model, hopefully correctly,

predicts that we will not play golf.

Notice that the probabilities that the model outputs match those in the posterior

probability table. Also, note that the call to the categoricalNB() constructor in line 96 of the

accompanying NaiveBayes.py file instantiates the classifier and passes the alpha=0 argument to

bypass the Laplacian correction that is implemented by default since we handled the Laplacian

transformation manually as described above (Sklearn.Naive_bayes.CategoricalNB — Scikit-

Learn 0.24.2 Documentation, n.d.). The categoricalNB() classifier is the correct Naïve Bayes

classifier for categorical features, as is the case with our weather outlook variable

(Sklearn.Naive_bayes.CategoricalNB — Scikit-Learn 0.24.2 Documentation, n.d.).

Verification of Results

Figure 7 demonstrates the output verification using Excel to manually calculate the

frequency tables, likelihood tables, and posterior probabilities. The upper right-hand corner of

the image displays the probabilities output in Excel, which match those output by the Naïve

Bayes classifier created using the scikit-learn package in Python. The higher of each condition’s

probabilities are highlighted in green, while the lower probability is highlighted in orange. The

NAIVE BAYES CLASSIFIER 10

output corresponds to that created by the Naïve Bayes classifier in the Python script. To run the

accompanying Python script, NaiveBayes.py, one only needs to call the script from the Python

interpreter since the Python script includes the sample dataset.

Handling Multiple Features

 In cases with multiple feature variables, once the posterior probability tables are created

for each feature, we can calculate the probabilities of multiple features by multiplying them

using the following formula: 𝑃(𝑌𝑒𝑠|𝐸) = 𝑃(𝐸1|𝑌𝑒𝑠) × 𝑃(𝐸2|𝑌𝑒𝑠) … × 𝑃(𝐸𝑛|𝑌𝑒𝑠) ×

𝑃(𝑌𝑒𝑠), where n represents the number of features in the dataset and E represents the evidence.

We calculate the same probability for the “No” class and standardize the variables by dividing

each over the sum of the two, allowing us to compute the posterior probabilities when multiple

features exist (i.e., temperature and humidity). The simple example this paper describes only

uses a single feature variable (i.e., weather outlook) for demonstration purposes.

Conclusion

In conclusion, this paper has presented a clear and concise explanation of the Naïve

Bayes classifier, a machine learning technique derived from Bayes’ theorem. By utilizing the

scikit-learn package in Python, we demonstrated the application of this classifier to a simple

problem: predicting whether golf would be played given specific weather conditions. The step-

by-step process, including the Laplacian correction to address the zero-probability problem,

creation of frequency and likelihood tables, and calculation of posterior probabilities, offered a

comprehensive understanding of the method and its applications.

The paper also highlighted the importance of the Laplace transform in overcoming the

zero-probability problem, allowing for more accurate and reliable predictions. The classifier’s

NAIVE BAYES CLASSIFIER 11

effectiveness and efficiency were demonstrated through the Python implementation and the

manual verification of results using Excel, showcasing its practicality for real-world applications.

In summary, the Naïve Bayes classifier has proven to be a powerful and straightforward

machine learning technique for solving classification problems. The detailed explanation, Python

implementation, and Excel verification provided in this paper serve as a solid foundation for

further exploration and utilization of the Naïve Bayes classifier in more complex problems

involving multiple features and larger datasets. This study contributes to the understanding of

this versatile technique and its potential applications in various fields.

NAIVE BAYES CLASSIFIER 12

References

Cherian, V. (2017). Heart Disease Prediction Using Naïve Bayes Algorithm and Laplace

Smoothing Technique. 5(2), 6.

Naive Bayesian. (n.d.). Retrieved July 18, 2021, from

https://www.saedsayad.com/naive_bayesian.htm

Navlani, A. (2018, December 4). Sklearn Naive Bayes Classifier Python: Gaussian Naive Bayes

Scikit-Learn Tutorial. DataCamp Community.

https://www.datacamp.com/community/tutorials/naive-bayes-scikit-learn

Pieter Abbeel. (2012, May 11). Laplace smoothing. https://www.youtube.com/watch?v=gCI-

ZC7irbY&t=3s

Sharda, R., Delen, D., & Turban, E. (2020). Analytics, data science, & artificial intelligence

(Eleventh edition). Pearson.

Sklearn.naive_bayes.CategoricalNB — scikit-learn 0.24.2 documentation. (n.d.). Retrieved July

18, 2021, from https://scikit-

learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html

Spiegel, M. R. (1965). Laplace transforms. McGraw-Hill New York.

https://www.saedsayad.com/naive_bayesian.htm
https://www.datacamp.com/community/tutorials/naive-bayes-scikit-learn
https://www.youtube.com/watch?v=gCI-ZC7irbY&t=3s
https://www.youtube.com/watch?v=gCI-ZC7irbY&t=3s
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html

