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Abstract 

This paper presents a simple Naïve Bayes classifier implemented in Python using the 

scikit-learn package, designed to predict the likelihood of playing golf on a given day based on 

the weather outlook. The classifier addresses the zero-probability problem by employing the 

Laplacian correction technique. It then converts the dataset into a frequency table and creates a 

"likelihood" table by computing the relevant probabilities. Subsequently, the classifier calculates 

the posterior probabilities for each class. To ensure accuracy, the paper verifies the output of the 

classifier using manual calculations in Excel. 

  



NAIVE BAYES CLASSIFIER  3 

 

 

Figure 1. The dataset before Laplace correction 

 

Figure 2. The dataset after the Laplace transformation 
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Figure 3. Frequency table showing the crosstab of the feature and target variables 

 

Figure 4. Likelihood table of the feature and target variables 

 

Figure 5. Posterior probability calculations 

 

Figure 6. Predictions produced by the Naïve Bayes classifier based on its input data 
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Figure 7. The output of the Python script verified in Excel 
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Option #1: Naive Bayes Classifier 

 Sharda et al. (2020) define Naïve Bayes as a machine-learning technique derived from 

Bayes’ theorem. Bayes’ theorem is defined as follows: 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑×𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
. We define 

the posterior as P(H | E), the probability of a hypothesis, H, given some evidence, E. 

Likewise, we define the likelihood as P(E | H), the probability of the evidence given some 

hypothesis. We denote the prior as P(H), the probability of the hypothesis. Finally, we 

denote the probability of the evidence as P(E). 

Problem Definition 

In this paper, we examine a simple problem using a sample dataset containing 14 

observations and three features: (a) a sequential number representing the day each observation 

was recorded, (b) the categorical variable containing the weather outlook for that day (i.e., 

raining, overcast, or sunny), and (c) the target variable, indicating whether we played golf on that 

day (i.e., yes or no). The problem we are trying to solve is predicting whether we will play golf 

on any given day, given that day’s weather outlook, which is the evidence in this scenario. 

Predicting whether we will play golf represents the hypothesis. 

Addressing the Zero-Probability Problem 

However, given this dataset and the nature of Naïve Bayes classifiers, the possibility of 

something known as the zero-probability problem arises. The zero-probability problem occurs 

when there is no condition for a given scenario in our training data, which causes the probability 

of that scenario to be reduced to zero if it occurs in our test data. One technique to overcome this 

problem is Laplacian correction, a smoothing technique (Navlani, 2018). Cherian (2017) 

describes smoothing techniques as those that attempt to capture important patterns in data while 
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avoiding “fine-scale structures/rapid phenomena” (p. 71). Additionally, Spiegel (1965) defines 

the Laplace transform as an essential component of scientists’ mathematical background and an 

effective means to solve many problems arising in various fields of science and engineering. 

Laplacian Correction 

To perform a Laplace transformation of a dataset, we add records for all the various 

scenarios that could occur within our training data (Navlani, 2018). For example, in Figure 1, the 

training dataset does not contain any record where we do not play golf when it is overcast. 

Therefore, we add a record for each possible scenario that could exist within our training data 

(Pieter Abbeel, 2012). Figure 2 shows the dataset after applying the Laplacian correction. We 

have added a record for each possible combination of scenarios that may exist in the training 

data, adding a total of six records, which increases the record count from 14 to 20 and eliminates 

the zero-probability problem. 

Creating the Frequency and Likelihood Tables 

The next step is to create a frequency table using these updated counts. Figure 3 shows 

the frequency table that the Python script creates. The frequencies are simply the number of 

times a condition and outcome occur together. To create a likelihood table, we divide each 

frequency by the total number of frequencies in each category of the target variable (i.e., yes or 

no). Figure 4 shows the likelihood of the weather outlook, given that we played golf on that day 

(i.e., P(E | H)). Additionally, the column and row totals in this table allow us to calculate the 

priors: (a) P(H) (i.e., the likelihood that we played golf) and (b) P(E) (i.e., the likelihood of the 

weather outlook). 

Calculating the Posterior Probabilities 
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With the likelihood table and priors determined, we can plug these values into Bayes’ 

theorem to compute the posterior probabilities (i.e., “What is the probability that we played golf 

given a certain weather outlook?”). Figure 5 displays the posterior probabilities for each category 

of the predictor and target variables (i.e., P(H | E) = P(Yes | Rainy)). The model’s final 

prediction is determined by whether the probability is higher for the “Yes” or “No” class. For 

instance, the model predicts that we do not play golf when the weather is rainy because P(No | 

Rainy) > P(Yes | Rainy) (i.e., 0.57 > 0.43). Figure 6 presents the predictions output by the model 

for each category of the outlook variable. When the weather is overcast and sunny, the model 

predicts we will play golf. However, when the weather is rainy, the model, hopefully correctly, 

predicts that we will not play golf. 

Notice that the probabilities that the model outputs match those in the posterior 

probability table. Also, note that the call to the categoricalNB() constructor in line 96 of the 

accompanying NaiveBayes.py file instantiates the classifier and passes the alpha=0 argument to 

bypass the Laplacian correction that is implemented by default since we handled the Laplacian 

transformation manually as described above (Sklearn.Naive_bayes.CategoricalNB — Scikit-

Learn 0.24.2 Documentation, n.d.). The categoricalNB() classifier is the correct Naïve Bayes 

classifier for categorical features, as is the case with our weather outlook variable 

(Sklearn.Naive_bayes.CategoricalNB — Scikit-Learn 0.24.2 Documentation, n.d.). 

Verification of Results 

Figure 7 demonstrates the output verification using Excel to manually calculate the 

frequency tables, likelihood tables, and posterior probabilities. The upper right-hand corner of 

the image displays the probabilities output in Excel, which match those output by the Naïve 

Bayes classifier created using the scikit-learn package in Python. The higher of each condition’s 

probabilities are highlighted in green, while the lower probability is highlighted in orange. The 
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output corresponds to that created by the Naïve Bayes classifier in the Python script. To run the 

accompanying Python script, NaiveBayes.py, one only needs to call the script from the Python 

interpreter since the Python script includes the sample dataset. 

Handling Multiple Features 

 In cases with multiple feature variables, once the posterior probability tables are created 

for each feature, we can calculate the probabilities of multiple features by multiplying them 

using the following formula: 𝑃(𝑌𝑒𝑠|𝐸) = 𝑃(𝐸1|𝑌𝑒𝑠) × 𝑃(𝐸2|𝑌𝑒𝑠) … × 𝑃(𝐸𝑛|𝑌𝑒𝑠) ×

𝑃(𝑌𝑒𝑠), where n represents the number of features in the dataset and E represents the evidence. 

We calculate the same probability for the “No” class and standardize the variables by dividing 

each over the sum of the two, allowing us to compute the posterior probabilities when multiple 

features exist (i.e., temperature and humidity). The simple example this paper describes only 

uses a single feature variable (i.e., weather outlook) for demonstration purposes. 

Conclusion 

In conclusion, this paper has presented a clear and concise explanation of the Naïve 

Bayes classifier, a machine learning technique derived from Bayes’ theorem. By utilizing the 

scikit-learn package in Python, we demonstrated the application of this classifier to a simple 

problem: predicting whether golf would be played given specific weather conditions. The step-

by-step process, including the Laplacian correction to address the zero-probability problem, 

creation of frequency and likelihood tables, and calculation of posterior probabilities, offered a 

comprehensive understanding of the method and its applications. 

The paper also highlighted the importance of the Laplace transform in overcoming the 

zero-probability problem, allowing for more accurate and reliable predictions. The classifier’s 
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effectiveness and efficiency were demonstrated through the Python implementation and the 

manual verification of results using Excel, showcasing its practicality for real-world applications. 

In summary, the Naïve Bayes classifier has proven to be a powerful and straightforward 

machine learning technique for solving classification problems. The detailed explanation, Python 

implementation, and Excel verification provided in this paper serve as a solid foundation for 

further exploration and utilization of the Naïve Bayes classifier in more complex problems 

involving multiple features and larger datasets. This study contributes to the understanding of 

this versatile technique and its potential applications in various fields. 
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