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OPTION #1: Essay - Feature Engineering and Hyperparameter Tuning 

 This paper addresses how feature engineering might enhance a hypothetical text 

classification model to identify abusive content online, also known as cyberbullying (CB) 

content or hate speech. The paper discusses features that might be extracted from a dataset to 

boost a classifier’s predictions and the types of classifiers that one might use in such scenarios, 

including Support Vector Machines (SVMs), one of the most popular classifiers in hate speech 

detection (Schmidt & Wiegand, 2017). The paper also discusses the methods SVMs use for 

predicting, their hyperparameters, and the tuning techniques from which they might benefit. 

Text Classification 

Biniz et al. (2018) define text classification as separating texts into content-based classes, 

a process gaining popularity due to the proliferation of textual data online. Fenner (2019) writes 

that compared to data grouped in tables, text documents present some additional challenges to 

machine learning (ML) algorithms, including that they vary in length, are order-dependent, and 

are unaligned. Therefore, text classification problems involve two steps: (a) selecting specific 

features from all those available using feature engineering and (b) applying classification 

algorithms to those chosen features (Biniz et al., 2018).  

Feature Engineering 

Schmidt and Wiegand (2017) explain feature engineering as a crucial step in the text 

classification pipeline since the features used by algorithms are one of their distinguishing 

factors. Biniz et al. (2018) describe feature engineering in text classification as comprising three 

main steps: (a) extracting all words from corpora, (b) selecting only significant words, and (c) 

attributing a weight to each word denoting its significance. Fenner (2019) decomposes feature 

engineering into several methodologies: (a) feature extraction, which converts low-level data 

like text data unsuitable for ML algorithms into higher-level tabular formats; (b) feature 
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selection, which removes unimportant or redundant features; (c) scaling and normalization, 

which adjusts the data’s range and center to ease learning; and (d) feature construction, which 

creates new features from existing ones. 

The Bag-of-Words (BOW) Approach 

One common method to extract features from text is the bag-of-words (BOW) approach, 

which Scott and Matwin (1999) describe as dominating the text classification literature. Martins 

and Matsubara (2003) define the BOW approach as representing text documents and their terms 

in tabular forms, where each row represents a document and each column a word. The BOW 

approach uses Boolean indicators to indicate the presence or absence of simple (i.e., 1-gram) or 

composed (i.e., 2, 3, …, n-gram) words.  

Character- and Word-Level Representations 

Schmidt and Wiegand (2017) write that ML algorithms utilizing the simple surface-level 

features described in the BOW approach yield good classification performance on hate speech 

detection. Further, Mehdad and Tetreault (2016) found character-level n-grams more predictive 

than word-based features for hate speech detection since character-level attributes attenuate the 

spelling variations encountered by ML algorithms when dealing with user-generated text. Other 

surface features from which hate speech detection can benefit include capitalization, punctuation, 

URL mentions, and comment and token lengths (Schmidt & Wiegand, 2017). 

Term Frequency-Inverse Document Frequency (TF-IDF) 

Fenner (2019) expands upon the BOW approach described above, producing counts of all 

document words. Moreover, by normalizing these counts and producing a term frequency-

inverse document frequency (TF-IDF) for each word, ML algorithms can inhibit longer 

documents from having undue influence on target variables and inhibit the contributions of 
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frequently occurring words because, as a word’s frequency increases, its ability to distinguish 

between documents lessens. 

Tokenization, Stopwords, and Stemming 

Taking a step back, before ML algorithms can create BOW representations of documents, 

they must tokenize them. Scott and Matwin (1999) write that text classifiers often strip 

documents of their case information and punctuation during tokenization. Further, classifiers 

may remove infrequent words occurring below a certain threshold and frequent words, known as 

stopwords, like “the,” “and,” and “of.” Finally, text classifiers commonly implement a feature 

engineering technique known as stemming, which aims to make features more statistically 

independent by mapping their morphological variants, such as in the cases of “learned” and 

“learning,” to a common root form: “learn.” 

Feature Engineering for Detecting Hate Speech 

Cyberbullying (CB), a conscious and persistent act of violence intended to harm 

individuals using online forms of communication repeatedly, is one of the most common online 

risks for adolescents (Cheng et al., 2019; Talpur & O’Sullivan, 2020). Further, Talpur and 

O’Sullivan (2020) describe feature engineering as one of the most common approaches to 

improving CB detection classifiers’ performance. Levy and Goldberg (2014) write that one of 

the most common features of hate speech detection classifiers is derived from neural network-

inspired training methods. Word embeddings are dense vector word representations that aim to 

capture the semantic and syntactic relationships between words. Other useful features for 

improving hate speech detection algorithms include (a) network-based features, such as users’ 

number of followers, (b) activity features, such as the times that users wrote messages, (c) user 

features, including users’ age and gender, (d) content-based features, such as profane words and 
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part-of-speech (POS) tagging, and (e) personality features, like users’ extraversion and 

neuroticism (Talpur & O’Sullivan, 2020). 

Machine Learning Classifiers 

 Talpur and O’Sullivan (2020) describe ML approaches that detect hate speech as 

implementing either binary or multi-class classifiers and that choosing the best classifier is the 

most crucial phase of the text classification pipeline. Fortunately, Schmidt and Wiegand (2017) 

assert that, as the features that different text classifiers consume tend to vary between classifiers, 

the predominant category into which most hate speech classifiers fall is that of supervised 

learning. In problems of hate speech detection, the most common classifiers are Support Vector 

Machines (SVMs), though Recurrent Neural Network Language Models (RNNLMs) are 

becoming more prominent. Other learning methodologies include Naïve Bayes (NB), Decision 

Trees (DTs), Random Forests (RFs), and k-Nearest Neighbors (k-NNs). This paper describes 

SVMs since they are the most common classifier to predict abusive content online. 

Support Vector Machines (SVMs) 

 Fenner (2019) describes SVMs as the nonlinear extensions of Support Vector Classifiers 

(SVCs), which use kernels to construct features automatically. The heart of both SVCs and 

SVMs involves (a) finding the support vectors that maximize the margin separation between 

examples and (b) minimizing the training errors. Kernels redescribe the data in terms of its 

relationship between examples rather than its relationship between features, providing a versatile 

way to automate feature construction. Learners like SVMs that implement kernels do not require 

data in tabular formats and process strings, trees, and sets. 

 Kernels 

Talpur and O’Sullivan (2020) used SVMs with Radial Basis Function (RBF) kernels, 

also called Gaussian kernels, to detect the severity of CB in tweets. Fenner (2019) writes that 
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using an RBF kernel is equivalent to projecting the examples of a dataset into an infinite-

dimensional space, meaning that for as many new columns as the implementation can add, there 

are always more to be added. However, as observations move further away from each other, their 

similarities quickly decrease. The gamma parameter (γ) controls how far the influence of an 

example travels, and it is related to the inverse of the standard deviation (σ) and variance (𝜎2): 

γ =
1

2σ2
. A small value for gamma means a big variance in the data, which, in turn, means that 

things far apart from each other can still be strongly related.  

Hyperparameters 

Claesen and De Moor (2015) describe hyperparameters as a group of algorithm 

characteristics that must be set appropriately to maximize the effectiveness of any ML approach. 

Hyperparameters control an algorithm’s bias-variance trade-off, a key balancing act in ML that 

describes choosing an appropriate level of model complexity. Further, Anguita et al. (2003) write 

that the design of SVMs requires tuning hyperparameters, which affect the classifier’s ability to 

generalize on new, unseen data. Ways to find the best combination of hyperparameter settings 

are known as searches, which are often performed either manually or by testing hyperparameter 

sets on pre-defined grids. 

The Grid and Random Searches 

Fenner (2019) describes two types of searches to tune hyperparameters: (a) the grid 

search and (b) the random search. The grid search performs an exhaustive search of all 

hyperparameter combinations, whereas the random search samples a given number of candidates 

from a hyperparameter space using specified distributions. If many hyperparameters exist, or the 

range of values for a hyperparameter is large, random searches provide a more practical 

approach than grid searches. Typical hyperparameters to set in SVMs include C, kernel, and 

gamma. Fenner advises using RBF kernels when a dataset’s observations exceed its features, as 
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is often the case with text classification problems. Users need to select values for gamma and C 

when using RBF kernels. C represents the model’s regularization, the total weight of its 

complexity penalty. The regularization penalty for SVMs in scikit-learn is the squared L2 penalty, 

the strength of which decreases as C increases (3.2. Tuning the Hyper-Parameters of an 

Estimator, n.d.). Therefore, SVMs intending to identify abusive content from online texts might 

benefit from implementing the grid or random searches described above, depending on the user-

defined hyperparameter search spaces. 

Conclusion 

 This paper described how feature engineering might be used to enhance the performance 

of a hypothetical text classifier to identify abusive content online. Methods discussed included 

feature extraction, selection, and construction, including the BOW approach, the removal of 

stopwords and stemming, character- and word-level representations, TF-IDF representations, and 

kernel methods to generate features automatically. The paper also discussed features that will 

boost the performance of hate speech detection algorithms, including network-based features, 

like users’ number of followers, and content-based features, like profane words and POS tagging. 

Finally, the paper described SVMs, the most popular classifiers for detecting abusive text 

content, their methods for making predictions, their hyperparameters, and the techniques for 

tuning them. 
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