
Running head: FEATURE ENGINEERING AND HYPERPARAMETER TUNING 1

OPTION #1: Essay - Feature Engineering and Hyperparameter Tuning

Scott Miner

Colorado State University – Global Campus

FEATURE ENGINEERING AND HYPERPARAMETER TUNING 2

OPTION #1: Essay - Feature Engineering and Hyperparameter Tuning

 This paper addresses how feature engineering might enhance a hypothetical text

classification model to identify abusive content online, also known as cyberbullying (CB)

content or hate speech. The paper discusses features that might be extracted from a dataset to

boost a classifier’s predictions and the types of classifiers that one might use in such scenarios,

including Support Vector Machines (SVMs), one of the most popular classifiers in hate speech

detection (Schmidt & Wiegand, 2017). The paper also discusses the methods SVMs use for

predicting, their hyperparameters, and the tuning techniques from which they might benefit.

Text Classification

Biniz et al. (2018) define text classification as separating texts into content-based classes,

a process gaining popularity due to the proliferation of textual data online. Fenner (2019) writes

that compared to data grouped in tables, text documents present some additional challenges to

machine learning (ML) algorithms, including that they vary in length, are order-dependent, and

are unaligned. Therefore, text classification problems involve two steps: (a) selecting specific

features from all those available using feature engineering and (b) applying classification

algorithms to those chosen features (Biniz et al., 2018).

Feature Engineering

Schmidt and Wiegand (2017) explain feature engineering as a crucial step in the text

classification pipeline since the features used by algorithms are one of their distinguishing

factors. Biniz et al. (2018) describe feature engineering in text classification as comprising three

main steps: (a) extracting all words from corpora, (b) selecting only significant words, and (c)

attributing a weight to each word denoting its significance. Fenner (2019) decomposes feature

engineering into several methodologies: (a) feature extraction, which converts low-level data

like text data unsuitable for ML algorithms into higher-level tabular formats; (b) feature

FEATURE ENGINEERING AND HYPERPARAMETER TUNING 3

selection, which removes unimportant or redundant features; (c) scaling and normalization,

which adjusts the data’s range and center to ease learning; and (d) feature construction, which

creates new features from existing ones.

The Bag-of-Words (BOW) Approach

One common method to extract features from text is the bag-of-words (BOW) approach,

which Scott and Matwin (1999) describe as dominating the text classification literature. Martins

and Matsubara (2003) define the BOW approach as representing text documents and their terms

in tabular forms, where each row represents a document and each column a word. The BOW

approach uses Boolean indicators to indicate the presence or absence of simple (i.e., 1-gram) or

composed (i.e., 2, 3, …, n-gram) words.

Character- and Word-Level Representations

Schmidt and Wiegand (2017) write that ML algorithms utilizing the simple surface-level

features described in the BOW approach yield good classification performance on hate speech

detection. Further, Mehdad and Tetreault (2016) found character-level n-grams more predictive

than word-based features for hate speech detection since character-level attributes attenuate the

spelling variations encountered by ML algorithms when dealing with user-generated text. Other

surface features from which hate speech detection can benefit include capitalization, punctuation,

URL mentions, and comment and token lengths (Schmidt & Wiegand, 2017).

Term Frequency-Inverse Document Frequency (TF-IDF)

Fenner (2019) expands upon the BOW approach described above, producing counts of all

document words. Moreover, by normalizing these counts and producing a term frequency-

inverse document frequency (TF-IDF) for each word, ML algorithms can inhibit longer

documents from having undue influence on target variables and inhibit the contributions of

FEATURE ENGINEERING AND HYPERPARAMETER TUNING 4

frequently occurring words because, as a word’s frequency increases, its ability to distinguish

between documents lessens.

Tokenization, Stopwords, and Stemming

Taking a step back, before ML algorithms can create BOW representations of documents,

they must tokenize them. Scott and Matwin (1999) write that text classifiers often strip

documents of their case information and punctuation during tokenization. Further, classifiers

may remove infrequent words occurring below a certain threshold and frequent words, known as

stopwords, like “the,” “and,” and “of.” Finally, text classifiers commonly implement a feature

engineering technique known as stemming, which aims to make features more statistically

independent by mapping their morphological variants, such as in the cases of “learned” and

“learning,” to a common root form: “learn.”

Feature Engineering for Detecting Hate Speech

Cyberbullying (CB), a conscious and persistent act of violence intended to harm

individuals using online forms of communication repeatedly, is one of the most common online

risks for adolescents (Cheng et al., 2019; Talpur & O’Sullivan, 2020). Further, Talpur and

O’Sullivan (2020) describe feature engineering as one of the most common approaches to

improving CB detection classifiers’ performance. Levy and Goldberg (2014) write that one of

the most common features of hate speech detection classifiers is derived from neural network-

inspired training methods. Word embeddings are dense vector word representations that aim to

capture the semantic and syntactic relationships between words. Other useful features for

improving hate speech detection algorithms include (a) network-based features, such as users’

number of followers, (b) activity features, such as the times that users wrote messages, (c) user

features, including users’ age and gender, (d) content-based features, such as profane words and

FEATURE ENGINEERING AND HYPERPARAMETER TUNING 5

part-of-speech (POS) tagging, and (e) personality features, like users’ extraversion and

neuroticism (Talpur & O’Sullivan, 2020).

Machine Learning Classifiers

 Talpur and O’Sullivan (2020) describe ML approaches that detect hate speech as

implementing either binary or multi-class classifiers and that choosing the best classifier is the

most crucial phase of the text classification pipeline. Fortunately, Schmidt and Wiegand (2017)

assert that, as the features that different text classifiers consume tend to vary between classifiers,

the predominant category into which most hate speech classifiers fall is that of supervised

learning. In problems of hate speech detection, the most common classifiers are Support Vector

Machines (SVMs), though Recurrent Neural Network Language Models (RNNLMs) are

becoming more prominent. Other learning methodologies include Naïve Bayes (NB), Decision

Trees (DTs), Random Forests (RFs), and k-Nearest Neighbors (k-NNs). This paper describes

SVMs since they are the most common classifier to predict abusive content online.

Support Vector Machines (SVMs)

 Fenner (2019) describes SVMs as the nonlinear extensions of Support Vector Classifiers

(SVCs), which use kernels to construct features automatically. The heart of both SVCs and

SVMs involves (a) finding the support vectors that maximize the margin separation between

examples and (b) minimizing the training errors. Kernels redescribe the data in terms of its

relationship between examples rather than its relationship between features, providing a versatile

way to automate feature construction. Learners like SVMs that implement kernels do not require

data in tabular formats and process strings, trees, and sets.

 Kernels

Talpur and O’Sullivan (2020) used SVMs with Radial Basis Function (RBF) kernels,

also called Gaussian kernels, to detect the severity of CB in tweets. Fenner (2019) writes that

FEATURE ENGINEERING AND HYPERPARAMETER TUNING 6

using an RBF kernel is equivalent to projecting the examples of a dataset into an infinite-

dimensional space, meaning that for as many new columns as the implementation can add, there

are always more to be added. However, as observations move further away from each other, their

similarities quickly decrease. The gamma parameter (γ) controls how far the influence of an

example travels, and it is related to the inverse of the standard deviation (σ) and variance (𝜎2):

γ =
1

2σ2
. A small value for gamma means a big variance in the data, which, in turn, means that

things far apart from each other can still be strongly related.

Hyperparameters

Claesen and De Moor (2015) describe hyperparameters as a group of algorithm

characteristics that must be set appropriately to maximize the effectiveness of any ML approach.

Hyperparameters control an algorithm’s bias-variance trade-off, a key balancing act in ML that

describes choosing an appropriate level of model complexity. Further, Anguita et al. (2003) write

that the design of SVMs requires tuning hyperparameters, which affect the classifier’s ability to

generalize on new, unseen data. Ways to find the best combination of hyperparameter settings

are known as searches, which are often performed either manually or by testing hyperparameter

sets on pre-defined grids.

The Grid and Random Searches

Fenner (2019) describes two types of searches to tune hyperparameters: (a) the grid

search and (b) the random search. The grid search performs an exhaustive search of all

hyperparameter combinations, whereas the random search samples a given number of candidates

from a hyperparameter space using specified distributions. If many hyperparameters exist, or the

range of values for a hyperparameter is large, random searches provide a more practical

approach than grid searches. Typical hyperparameters to set in SVMs include C, kernel, and

gamma. Fenner advises using RBF kernels when a dataset’s observations exceed its features, as

FEATURE ENGINEERING AND HYPERPARAMETER TUNING 7

is often the case with text classification problems. Users need to select values for gamma and C

when using RBF kernels. C represents the model’s regularization, the total weight of its

complexity penalty. The regularization penalty for SVMs in scikit-learn is the squared L2 penalty,

the strength of which decreases as C increases (3.2. Tuning the Hyper-Parameters of an

Estimator, n.d.). Therefore, SVMs intending to identify abusive content from online texts might

benefit from implementing the grid or random searches described above, depending on the user-

defined hyperparameter search spaces.

Conclusion

 This paper described how feature engineering might be used to enhance the performance

of a hypothetical text classifier to identify abusive content online. Methods discussed included

feature extraction, selection, and construction, including the BOW approach, the removal of

stopwords and stemming, character- and word-level representations, TF-IDF representations, and

kernel methods to generate features automatically. The paper also discussed features that will

boost the performance of hate speech detection algorithms, including network-based features,

like users’ number of followers, and content-based features, like profane words and POS tagging.

Finally, the paper described SVMs, the most popular classifiers for detecting abusive text

content, their methods for making predictions, their hyperparameters, and the techniques for

tuning them.

FEATURE ENGINEERING AND HYPERPARAMETER TUNING 8

 References

3.2. Tuning the hyper-parameters of an estimator. (n.d.). Scikit-Learn. Retrieved September 25,

2021, from https://scikit-learn/stable/modules/grid_search.html

Anguita, D., Ridella, S., Rivieccio, F., & Zunino, R. (2003). Hyperparameter design criteria for

Support Vector Machines. Neurocomputing. https://doi.org/10.1016/S0925-

2312(03)00430-2

Biniz, M., Boukil, S., Adnani, F., Cherrat, L., & Moutaouakkil, A. (2018). Arabic Text

Classification Using Deep Learning Technics. International Journal of Grid and

Distributed Computing, 11, 103–114. https://doi.org/10.14257/ijgdc.2018.11.9.09

Claesen, M., & De Moor, B. (2015). Hyperparameter Search in Machine Learning.

ArXiv:1502.02127 [Cs, Stat]. http://arxiv.org/abs/1502.02127

Fenner, M. (2019). Machine Learning in Python for Everyone. Addison-Wesley.

Levy, O., & Goldberg, Y. (2014). Dependency-Based Word Embeddings. Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers), 302–308. https://doi.org/10.3115/v1/P14-2050

Martins, C., & Matsubara, E. (2003). Reducing the dimensionality of bag-of-words text

representation used by learning algorithms.

Mehdad, Y., & Tetreault, J. (2016). Do Characters Abuse More Than Words? Proceedings of the

17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, 299–303.

https://doi.org/10.18653/v1/W16-3638

Schmidt, A., & Wiegand, M. (2017). A Survey on Hate Speech Detection using Natural

Language Processing. Proceedings of the Fifth International Workshop on Natural

Language Processing for Social Media, 1–10. https://doi.org/10.18653/v1/W17-1101

Scott, S., & Matwin, S. (1999). Feature engineering for text classification. ICML, 99, 379–388.

https://scikit-learn/stable/modules/grid_search.html
https://doi.org/10.1016/S0925-2312(03)00430-2
https://doi.org/10.1016/S0925-2312(03)00430-2
https://doi.org/10.14257/ijgdc.2018.11.9.09
http://arxiv.org/abs/1502.02127
https://doi.org/10.3115/v1/P14-2050
https://doi.org/10.18653/v1/W16-3638
https://doi.org/10.18653/v1/W17-1101

FEATURE ENGINEERING AND HYPERPARAMETER TUNING 9

Talpur, B. A., & O’Sullivan, D. (2020). Multi-Class Imbalance in Text Classification: A Feature

Engineering Approach to Detect Cyberbullying in Twitter. Informatics, 7(4), 52.

