
Running head: COMMON PERSONALITY TRAITS 1

Option #1: Common Personality Traits

Scott Miner

Colorado State University – Global Campus

COMMON PERSONALITY TRAITS 2

Abstract

Figure 1. UML class diagram portraying the developer builder application

Figure 2. UML Sequence diagram showing the construction of a novice software developer object

COMMON PERSONALITY TRAITS 3

Figure 3. Successful program execution, showing developers of different types returned to the UI

COMMON PERSONALITY TRAITS 4

Option #1: Common Personality Traits

 For his fourth Critical Thinking assignment in CSC505: Principles of Software

Development, the student uses his personal experience and observation of expert software

developers to create UML class and sequence diagrams depicting three personality traits shared

among expert software developers. Figures 1 and 2 display these UML diagrams. The student

also implements his solution as a Python script, referencing the builder pattern for inspiration.

Baltes and Diehl (2018) write that expert software developers possess a particular set of

knowledge, skills, and experience, presenting the first theory of software development expertise

based on surveys of 335 developers and relevant literature. One of the main questions guiding

the authors’ research was, “What characteristics do developers assign to novices and experts?”

Participants in the study named expert developers’ shared personality traits, including open-

mindedness, curiosity, attentiveness to detail, patience, and self-reflectiveness.

Based on his personal experience and observations, this writer chose three of these

characteristics to model in his UML diagrams: (a) curiosity, (b) attentiveness to detail, and (c)

self-reflectiveness. Self-reflectiveness shares a critical connection with the concept of deliberate

practice and includes recognizing one’s strengths and weaknesses, as well as the ability to learn

from one’s past mistakes (Baltes & Diehl, 2018). Figure 1 shows these characteristics

documented as methods in the DeveloperBuilder, SoftwareDeveloperBuilder, and Developer

classes. Figure 2 shows these methods being called during the construction of a developer

object. Though this figure presents the interactions pertinent to constructing a single developer

object, the interactions to create all developer objects are nearly identical. As shown in Figure 1,

the SoftwareDeveloperBuilder class inherits the methods of the DeveloperBuilder interface,

which declares construction steps common to all builder types (Builder, n.d.).

COMMON PERSONALITY TRAITS 5

 Florijn et al. (1997) write that design patterns describe general solutions for recurring

design problems and offer several benefits for developing object-oriented software, including

minimizing design work and allowing developers to focus on critical decisions. Similarly,

Zimmer (1994) writes that design patterns support the reuse of design information and allow

developers to communicate more effectively. Lee et al. (2008) describe the builder pattern as

separating the construction of complex objects from their representation. Pressman and Maxim

(2020) expand upon this definition, writing that the builder pattern is a creational pattern

allowing the same construction process to create different object representations.

Believing that most individuals possess some level of the personality traits described

previously, this author implemented the builder pattern to construct different representations of

software developers (e.g., novices, intermediates, and experts) who possess varying amounts of

said characteristics, denoted by levels ranging from 1 to 3. For instance, if a developer achieves

a score of “1” for any of the three personality traits, he is ranked a novice. Intermediate-level

developers must score a “2” or higher in all characteristics, while expert-level developers must

achieve a score of “3” for all personality traits. The application uses random numbers to

generate these hypothetical trait scores, though one could attribute such scores to those achieved

through questionnaire scales designed to measure personality constructs (McCrae & John, 1992).

Step 5.1 in Figure 2 shows the creation of these trait scores in the Director class.

The program’s main function demonstrates the client code used to build the developer

representations. Lines 6 – 8 in the file client.py create new director and builder objects,

associating the builder object with the director. The Director class defines the order to call

construction steps, whereas concrete builders provide different implementations of the steps

(Builder, n.d.). Lines 10 – 13 of the client.py file call the Director class’s method to construct 50

COMMON PERSONALITY TRAITS 6

random developer types using a for loop. The methods in the Director class return either novice,

intermediate, or expert-level developers by chaining the methods of the

SoftwareDeveloperBuilder class together (e.g.,

builder.setType(“expert”).setCuriosity(3).setDetail(3).setReflective(3).getResult()), a technique

often used when implementing builder patterns (Design Patterns, n.d.). Steps 5.3 – 5.12 in

Figure 2 display these interactions.

Upon returning the result to the client code, Lines 14 – 17 of the file

software_developer_builder.py call the class’s reset method so that the builder instance is ready

to start creating another developer object, as shown in steps 5.12.1 and 5.12.2 of Figure 2. Line

13 of the client code calls the Developer class’s construction method, which outputs the

developer’s type and personality trait scores. Lines 15 – 25 of the client code demonstrate the

creation of novice, intermediate, and expert-level developers. Finally, as shown in Figure 1, the

client code has access to both the Director and SoftwareDeveloperBuilder classes. If the client

code needs to assemble a custom developer, such as the genius-level developer shown in lines 27

– 30 of the client.py file, it can access the builder directly. Otherwise, the Director class handles

the assembly of the most common developer types (Builder, n.d.). Figure 2 shows how the

Director class hides most of the details of developer construction from the client code,

simplifying the creation of developer representations. Figure 3 shows screenshots of successful

program execution.

In conclusion, this paper uses UML class and sequence diagrams to demonstrate three

personality traits of expert developers: curiosity, attentiveness to detail, and self-reflectiveness.

The student implemented his solution in a Python script using the builder pattern as inspiration,

simplifying object creation by using director and builder classes.

COMMON PERSONALITY TRAITS 7

References

Baltes, S., & Diehl, S. (2018). Towards a theory of software development expertise. Proceedings

of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 187–200.

https://doi.org/10.1145/3236024.3236061

Builder. (n.d.). Retrieved March 7, 2021, from https://refactoring.guru/design-patterns/builder

Design Patterns: Builder in Python. (n.d.). Retrieved March 7, 2021, from

https://refactoring.guru/design-patterns/builder/python/example

Florijn, G., Meijers, M., & Van Winsen, P. (1997). Tool support for object-oriented patterns.

European Conference on Object-Oriented Programming, 472–495.

Lee, H., Youn, H., & Lee, E. (2008). A design pattern detection technique that aids reverse

engineering. International Journal of Security and Its Applications, 2(1), 1–12.

McCrae, R. R., & John, O. P. (1992). An Introduction to the Five-Factor Model and Its

Applications. Journal of Personality, 60(2), 175–215. https://doi.org/10.1111/j.1467-

6494.1992.tb00970.x

Pressman, R. S., & Maxim, B. R. (2020). Software engineering: A practitioner’s approach

(Ninth edition). McGraw-Hill Education.

Zimmer, W. (1994). Relationships between Design Patterns. Pattern Languages of Program

Design, 345–364.

