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class chatbot:

def

def

__init_ (self):

self.max_vocab_size = 50000

self.max_seq_len = 38

self.embedding_dim = 160

self.hidden_state dim = 106

self.epochs = 8@

self.batch_size = 128

self.learning_rate = le-4

self.dropout = 6.3

self.data_path = r'G:\My Drive\chatbot\twcs.csv'

self.outpath = seqg2seq_path

self.version = 'v1'

self.mode = 'inference'

self.num_train_records = 56000

self.load_model_from = os.path.join(seq2seq_path, 's2s_model v1_.h5")
self.vocabulary path = os.path.join(seq2seq_path, 'vocabulary.pkl')

self.reverse vocabulary path = os.path.join(seq2seq _path, '"reverse vocabulary.pkl')
self.count_vectorizer_path = os.path.join(seq2seq_path, 'count_vectorizer.pkl®)
self.UNK = @

self.PAD =
self.START

n =

# intent model variables

self.intent_load_model_from = os.path.join(intents_path, ‘intents_chatbot_model.h5")
self.intent_load_intents_from = os.path.join(intents_path, 'intents_job_intents.json"')
self.intent_load_classes = os.path.join(intents_path, 'intents_classes.pkl')
self.intent_load words = os.path.join(intents_path, 'intents words.pkl')

process_data(self, path):

data = pd.read_csv(path)

if self.mode =="train':
data = pd.read_csv(path)
data['in_response_to_tweet_id'].fillna(-12345, inplace=True)
tweets_in = data[data['in_response_to_tweet_id'] == -12345]

tweets_in_out = tweets_in.merge(data, left on=['tweet_id'], right_on=['in_response_to_tweet id'])

return tweets_in_out[:self.num_train_records]
elif self.mode == 'inference':
return data

Figure 1. The chatbot’s constructor and its hyperparameters
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def define_model(self): EE =N = - A

# Embedding Layer

embedding = Embedding(
output_dim=self.embedding_dim,
input_dim=self.max_vocab_size,
input_length=self.max_seq_len,
name="embedding',

)

# Encoder input

encoder_input = Input(
shape=(self.max_seq_len,),
dtype='int32",
name="encoder_input”,

)

embedded_input = embedding(encoder_input)

encoder_ran = LSTM(
self.hidden_state dim,
name="encoder ',
dropout=self.dropout

# Context is repeated to the max sequence length so that the same context
# can be feed at each step of decoder
context = RepeatVector(self.max_seq_len){encoder_rnn(embedded input))

# Decoder

last_word_input = Input(
shape=(self.max_seq_len,),
dtype='int32',
name="last_word_input’,

)

embedded_last_word = embedding(last_word_input)
# Combines the context produced by the encoder and the last word uttered as inputs
# to the decoder.

decoder_input = concatenate([embedded last_word, context], axis=2)

# return_sequences causes LSTM to produce one output per timestep instead of one at the
# end of the input, which is important for sequence producing models.
decoder_rnn = LSTM(
self.hidden_state_dim,
name="decoder’,
return_sequences=True,
dropout=self.dropout
)

decoder_output = decoder_rnn{decoder_input)

#TimeDistributed allows the dense layer to be applied to each decoder output per timestep
next_word_dense = TimeDistributed(

Dense(int(self.max_vocab_size / 28), activation='relu’),

name="next_word_dense',
) (decoder_output)

next_word = TimeDistributed(
Dense(self.max_vocab_size, activation='softmax'),
name="next_word_softmax’

) (next_word_dense)

return Model(inputs=[encoder_input, last_word_input], outputs=[next_word])

def create_model (self):
_model_ = self.define_model()
adam = Adam(learning_rate=self.learning_rate, clipvalue=5.9)
_model_.compile(optimizer=adam, loss='sparse_categorical_crossentropy")
return _model_

# Function to append the START indext to the response Y
def include start_token(self, Y):
print(Y.shape)
Y = Y.reshape((Y.shape[@], Y.shape[1]))
Y = np.hstack((self.START * np.ones((Y.shape[®], 1)), Y[:, :-1]))
#Y = Y[:,:,np.newaxis]
return Y

def binarize_output_response(self, Y):
return np.array([np_utils.to_categorical(row, num_classes=self.max_vocab_size)
for row in Y])

def respond_to_input(self, model, input_sent):
input_y = self.include_start token(self.PAD *np.cnes((1, self.max_seq_len)))
ids = np.array(self.words to_indices(input_sent)).reshape((1, self.max_seq_len))
for pos in range(self.max_seq_len - 1):
pred = model.predict([ids, input_y]).argmax(axis=2)[8]
# pred = model.predict([ids, input_y])[e]
input_y[:, pos + 1] = pred[pos]
return self.indices_to_words({model.predict([ids, input_y]).argmax(axis=2)[e])

def train_model(self, model, X_train, X test, y train, y_test):
input y train = self.include start token(y train}

Figure 2. Sequence-to-sequence (Seq2Seq) model
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Rows:

memory
None

usage:

DataFrame shape: (2811774, 7)
2811774
Cols: 7

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2811774 entries, © to 2811773
Data columns (total 7 columns):

# Column Dtype

® tweet_id int64

1 author_id object
2  inbound bool

3 created_at object
4  text object
5 response_tweet id object
6 in_response_to_tweet id float64

dtypes: bool(l), float64(1l), int64(1l), object(4)
131.4+ MB

Figure 3. Overview of the Customer Support on Twitter dataset

2811769
2811770
2811771
2811772

2811773

tweet_id author_id inbound
1 sprintcare False
2z 115712 True
3 115712 True
4 sprintcare False

5 115712 True

20987947  sprintcare False
2087948 823869 True
2812240 121673 True
2987949 AldiUK False
2987950 823870 True

created_at

Tue Oct 31 22:10:47 +0000 2017
Tue Oct 31 22:11:45 +0000 2017
Tue Oct 31 22:08:27 +0000 2017
Tue Oct 31 21:54:49 +0000 2017
Tue Oct 31 21:49:35 +0000 2017
Wed Nov 22 08:43:51 +0000 2017
Wed Nov 22 08:35:16 +0000 2017
Thu Nov 23 04:13:07 +0000 2017
Wed Nov 22 08:31:24 +0000 2017

Tue Nov 21 22:01:04 +0000 2017

text response_tweet_id in_response_to_tweet_id

@115712 | understand. | would like to assist y...
@sprintcare and how do you propose we do that
@sprintcare | have sent several private messag...
@115712 Please send us a Private Message so th...
@sprintcare | did.

@623869 Hey, we'd be happy to look into this f...
@115714 wifl? I've been having really shitty s...
@143549 @sprintcare You have to go to hitps://...
@823870 Sounds delicious, Sarah! @ https://tc...

@AIdiUK warm sloe gin mince pies with ice cre...

2

NaN

1

3

4

NaN
2087947
NaN
NaN

2987951,2087849

3.0

1.0

40

5.0

6.0
2987948.0
NaN
2812239.0
2987950.0

NaN

Figure 4. The first and last five rows of the Customer Support on Twitter dataset
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Histograms and Top 10 Most Frequent n-grams
in the Customer Support on Twitter Dataset
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Figure 5. Histograms and the top 10 most frequent n-grams in the Customer Support on Twitter dataset
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Top 20 Organizations With the Most Tweets

AmazonHelp
AppleSupport
SpotifyCares
Uber_Support
Tesco
comcastcares
Delta
TMobileHelp
British_Airways
AmericanAir
SouthwestAir
Ask_Spectrum
hulu_support
XboxSupport
sprintcare
UPSHelp
VirginTrains
sainsburys
GWRHelp
AskTarget

Organization
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Figure 6. Top 20 organizations in the Customer Support on Twitter dataset with the most tweets
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Figure 7. Word cloud displaying the most frequently occurring words in the Customer Support on Twitter dataset
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203/293

- 3295 13/step - loss: 2.8676 - val_loss: 2.7612

tpoch @ee7s: val loss improved from 2.78380 to 2.78122, saving model to /content/drive/myDrive/chatbot/s2s_model v1_.ks
Epoch 76/80

2934293 3295 1s/step - loss: 2,578 - val loss: 2.7818

Fpoch 86676: val_loss did not improve from 2.78122
Epoch 77/88

2034203 [= - 3295 1s/step - loss: 2.0487 - val_loss: 2.7797

Epoch @0077: val_loss improved from 2.78122 to 2.77966, saving model to /content/drive/MyDrive/chatbot/s2s_model v1_.hs
Epoch 78/86

293/20% - 3305 1s/step - loss: 2.2485 - val_loss: 2.7790

Fpoch 86076: val_loss improved from 2.77966 to 2.77903, saving model to /content/drive/MyDrive/chatbot/s2s_model_vl_.hS
Epoch 79/8@

2e3/293 [=== 1 - 330s 1s/step - loss: 2.0323 - val loss: 2.7772

Epoch 99679: val loss Imgroved from 2.77993 to 2.77717, saving model to /Content/orive/MyDrivefchatbot/s2s model vl .hs

Epoch 86/8@

293/203 [= - 327% 18/step - loss: 2.0228 - val loss: 2.7763

Epoch @Besa: val_loss impraved from 2.77717 1o 2.77626, saving model to /content/drive/MyDrive/chatbot/s2s_model_vl_.hS
['Great day at the soclal médla dept of @americanalr || Thanks ann and her team hd) hitps://t.co/saaskl2vss’, "@marksandspencer Hello. I've reported an lssue though the uebsite and I'm not happy with the response. I can't reply to
the email se replied through the web again. Please can you let me communicate in a more efficient way? L still haven't heard back.”, '@iMobiletielp how long after you do a jump upgrade do you have to send back the old phone? and does
that time start fron when it is shipped ar after it arrives?’, 'Pre-order the best iPhome yet, on America’s Best Unlimited Network.\n https://t.co/taBlrzttml’, '@British Airways Trying {and failing) to update my contact details, can
you assist?', '@ cname_ you really need to fix the polnte du hoc map glitch had 3 people deing it ruins the game’, "§DoorDash Help Just Dm'd you guys, had an awful lunch experdence.”, '@askciti could you please put me in touch with
someone who manages corporate credit cards. No one available 2477 helpline.', "This #Freebiefriday you could #win a @ cname_ Web Weaver - RT+Foll by 38,111 Visit hbtps://t.co/euibLikBEq for @_cname_ #BlackFriday K'NEX deals!
hitps i/ /. co/a?GINpCFST", "Yo @Poslmales Help - you seriously can'l refund me when something T ordered cane R2W? #loslacustomer #raubecon &tryingloglvenefoodpatsoning @ cname_ hilps://L.co/qlogpTylvl"]

(1, 3a)

(1, 30)

(1, 30)

(1, 3a)

(1, 3@)

(1, 2@)

(1, 30)

(1, 3@)

(1, 2@)

(1, 38)
['Great day al the socisl nédia depl of @mericantir |1 Thanks Ann and her team fhd https://1.co/Saaokizvea’, "Guarksandspencer Hello. T've reported an issue though the website and T'w not happy with the response. T can't reply Lo

the email so replicd through the web again. Please can you let me communicate in a more efficient way? I still hawen't heard back.”, '@TMobileHelp how long after you do a jump upgrade do you have to send back the old phone? And docs
that time start from when it is shipped or after it arrives?’, ‘Pre-order the best iPhone yet, on America’s Best Unlimited Network.\n Rttps://t.co/tabFrzttml’, ‘@British Alrways Trying (and failing) to update my contact details, can
you assiet?’, '@ cname you really nead to fix the polnte du hoc map glitch had 3 people doing 1t rulns the game', “"§DoorDash Help Just DN'd you guys, had an awful lunch experfence.”, '@askCiti could you please put me In touch with
somecne who manages corporate credit cards. Mo ene availasle 247/ helpline.', "This streediefriday you could #win @ crame_ Web Weaver - RT+holl by 30.111 Visit https://t.co/evebLukseq for f_cnane__ #ilackfriday K'NEX deals!
https://t.co/mzGiNpcfsz®, “Yo @Postmates Help - you seriously can't refund me when something T ordered came RAW? #raubacon stryingtog; ipaisoning @_cname__ hittps://t.co/qroeprytvt”]

Theet 1n Tweet out
o Great day at the social média dept of @america cname__ we love you enjoy your ride | - becky
1 fmarksandspencer Hello. T've reported an issue crame__hi , ne are sorry to hear this . pl
2 @TMobilerelp how long after you do a jump upgr we apologize for the trouble . plea
3 Pre-order the best iPhane yet, on America’s Be i_cname_ 1 have a reliance phone whose phone
4 geritish Airways Trylng (and failing) Lo updal i _coame_ hl there , sorry Lo hear this . ple
5 {§_cname_ you really need to fix the pointe d cname__ hi there | we are here to help . pl.
6 GDoorbash_Help Just DH'd you uys, had an awfu i_cname_ hey there | we can help out . pleas
7 @askcltl could you please put me in touch with... @ cname_ hi there , thanks for reachilng out
8 Ihis 4Fresbiskriday you could #win 4 §_cname_ _cname__ @_cnape_ @
9 Vo @ostmates Help - yau seriously can't refun... @ cname_ hey there ! can you dn us your acco
Processing finlshed, time taken 1S 27616.46145153457

Lo 1Y S s T

Figure 8. The results after training the chatbot for 80 epochs using Google’s servers available through Google Colab Pro Notebooks

intents_job_intents.json X
1 f

2 "intents": [

3 {

4 “tag": “"greeting",

5 "patterns”: [

6 "Greetings.",

7 NHLL,

8 "Howdy. ",

9 "Bonjour.",

10 "Good day.",

11 "Good morning.

12 "Hey.",

13 "Hi-ya.",

14 "Hello.",

15 "How are you today?",
16 "How are you?"

17 "What's up?”,

18 "What's happening?”,
19 "Howdy-do.",

pl "Shalom",

21 "Good to see you.",
22 "Hello, there!",

23 "Can you hear me?",
24 "Where are you?"

25 1

26 "pesponses": [

27 "Hello. My name is iBot. I am a technical customer support chatbot.</span»><br><span>How can I help you today?</span>"
28 ]

29 B

30 {

31 “tag": "farewell statement”,
32 "patterns": [

33 "Goodbye.

34 "Bye.",

35 "Bye-Bye.",

36 "Adieu.",

37 "Adios.",

38 "Godspeed

39 "So long.",

49 "Talk to you later.",
41 "See you later.",

Figure 9. A portion of the JSON intents file used to train the chatbot’s retrieval-based model
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# init training data
training = []
output_empty = [@] * len(classes)
for doc in documents:
bag = []
pattern_words = doc[@]
pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words]

for w in words:
bag.append(1) if w in pattern_words else bag.append(®@)

output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1

training.append([bag, output row])

random.shuffle(training)

training = np.array(training)

# create train and test lists. X - patterns, y - intents
train _x = list(training[:,@])

train_y = list(training[:,1])

print('Training data created')

# Create model with 3 layers. First layer 128 neurons, second layer 64 neurons
# and 3rd output layer contains number of neurons equal to number of intents to
# predict

# output intent with softmax

model = Sequential()

model.add(Dense(128, input_shape=(len(train_x[0]),), activation="relu'))
model.add(Dropout(©.5))

model.add(Dense(64, activation='relu'))

model.add(Dropout(8.5))

model.add(Dense(len(train_y[e]), activation='softmax'))

# Compile model. Stochastic gradient descent with Nesterov accelerated

# gradient gives good

# results for this model

sgd = SGD(learning_rate=6.01, decay=le-6, momentum=08.9, nesterov=True)
model.compile(loss="'categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

# fitting and saving the model
hist = model.fit(np.array(train_x), np.array(train_y), epochs=1060, batch_size=5, verbose=1)

model.save(os.path.join(intents_path, 'intents_chatbot model.h5'), hist)

print('model created’)

Figure 10. Python code that implements training for the chatbot’s retrieval-based model
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[121]

from
from
from
from
from
impo
from
from

def

keras.models import Sequential

keras.layers import Dense, Embedding, LSTM, GlobalMaxPoolinglD
keras.wrappers.scikit_learn import KerasClassifier
sklearn.model_selection import StratifiedKFold
sklearn.model_selection import cross_val_score

rt numpy

keras.callbacks import *

keras.initializers import Constant

create model pretrained():

model = Sequential()

#embedding layer

model.add(Embedding(size_of_vocabulary,3ee,
input_length=25,
embeddings_initializer=Constant(embedding_matrix),
trainable=True))

#lstm layer

model.add(LSTM(128, return_sequences=True,dropout=0.2))

#Global Maxpooling
model.add(GlobalMaxPoolinglD())

#Dense Layer
model.add(Dense(64,activation="relu’))
model.add(Dense(len(y_train_all[e]),activation="softmax"'))

#Add loss function, metrics, optimizer

# Compile model. Stochastic gradient descent with Nesterov accelerated

# gradient gives good

# results for this model

sgd = SGD(learning_rate=0.01, decay=le-6, momentum=2.9, nesterov=True)
model.compile(loss="'sparse_categorical_crossentropy', optimizer=sgd, metrics=["'accuracy'])

#addingcallbacks

es = EarlyStopping(monitor='val loss', mode='min', verbose=2, patience=1600)

mc = ModelCheckpoint(model_path_pretrained, monitor='val_accuracy', mode='max',
save _best only=True, verbose=2)

print(model.summary())

return model

Figure 11. Code to create a model using pre-trained word embeddings
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import matplotlib.pyplot as plt
from sklearn.model selection import cross_val score
from keras.wrappers.scikit_learn import KerasClassifier

pretrained = KerasClassifier(build_fn=create_model pretrained, epochs=360,
batch_size=5, verbose=2)
scratch = KerasClassifier(build_fn=create_model_scratch, epochs=300,
batch_size=5, verbose=2)
bag_of _words = KerasClassifier(build fn=create_model bag, epochs=300,
batch_size=5, verbose=2)
classifiers = {'WordEmbeddings (pre-trained)': pretrained,
'"WordEmbeddings (from scratch)': scratch}

kfold = StratifiedKFold(n_splits=1@, shuffle=True, random_state=1)

fig, ax = plt.subplots()
for name, model in classifiers.items():
print(name, model)
cv_scores = cross_val_score(model,
np.array(X_train_all),
np.argmax(y_train_all, axis=1),
cv=kfold,
scoring="accuracy',
n_jobs=-1,
verbose=2)
print(cv_scores.mean())
my 1bl = f'{name} {cv_scores.mean():.3f}
ax.plot(cv_scores, '-o', label=my 1bl)

cv_scores = cross_val_score(bag_of_words,
np.array(X_train_bag),
np.argmax(y_train_bag, axis=1),
cv=kfold,
scoring="'accuracy',
n_jobs=-1,
verbose=2)

my_1lbl = f£'BOW {cv_scores.mean():.3f}’

ax.plot(cv_scores, '-o', label=my_1bl)

ax.set_ylim(e.e, 1.1)

ax.set_xlabel('Fold")

ax.set_ylabel('Accuracy')

handles, labels = ax.get_legend_handles_labels()

# sort both labels and handles by accuracy

labels, handles = zip(*sorted(zip(labels, handles), key=lambda t: t[@]))
print(f'label: {labels}, handle: {handles}')

ax.legend(handles, labels, ncol=1, bbox_to_anchor=(1.04,.5),loc="center left")

plt.show()

Figure 12. Code to generate the cross-validation plots

10
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Figure 13. 10-fold cross-validation comparing three different word representations
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Figure 14. 10-fold cross-validation comparing three different word representations
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Figure 15. 10-fold cross-validation comparing three different word representations
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—  +Code +Tex s -ond v
Q 357 return result L R - I - 1Y) '..?3:
Q 368 ity
369 def string_clean(self, response_orig):
<> 370
371 def upper_repl(match):
o 372 punctuated_inits = \
373 ‘-* 4 match.group(1).upper() + '.' \
374 + match.group(2).upper() + '."
375 return punctuated_inits
376
377 response = response_orig
378 sent_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle'})
379 # remove '@ cname_ '
380 response = response.replace('@ cname__ ', ')
381
382 # remove spaces before punctuation
383 response = re.sub(r'\s{[,?.1"](2:\s]$))', r'\1', response)
384 # tokenize sentences
385 sentences = sent_tokenizer.tokenize(response)
386 # captialize senteces
387 sentences = [sent.capitalize() for sent in sentences]
388
389 # add html formatting
39 sentences = '</span><br><span>’'.join(sentences)
391 sentences += '</span>'
392 # capitalize om
393 sentences = sentences.replace('dm’, "dm'.upper())
394
395 # replace *~' with '-'
396 sentences = sentences.replace('~', '-")
97 pattern = re.compile(r’'- \b([a-z])([a-z])\b")
398
399 sentences = re.sub(pattern, upper_repl, sentences)
100 return sentences
401
402 def main(self):
403 if self.mode == 'train':
404 X_train, X_test, y_train, y_test, test_sentences = self.data_creation()
405 print(X_train.shape, y_train.shape, X_test.shape, y test.shape)
488 print(‘Data Creation completed')
487 model = self.create_model()
208 print(‘'Model creation completed')
409 model = self.train_model({model, X train, X_test, y_train, y_test)
41¢ test_responses = self.generate_response(model, test_sentences)
411 print(test_sentences)
412 print(test_responses)
413 pd.DataFrame(test_responses).to_csv(self.outpath + 'output response.csv', index=False}
a14
415 elif self.mode == "inference':
116 #seq2seq model
417 model = lead_model(self.load_model from)
418 self.vocabulary = joblib.load(os.path.join(self.outpath, 'vocabulary.pkl®'))
415 self.reverse_vocabulary = joblib.load(os.path.join(self.outpath, 'reverse_vocabulary.pkl®))
420 count_vectorizer = joblib.load(os.path.join(self.outpath, 'count_vectorizer.pkl'))
421 self.analyzer = count_vectorizer.build_analyzer()
422
423 #load intent model
434 intent_model = load_model(self.intent load_model from)
425 self.intent_intents = json.loads(cpen(self.intent_load_intents_from, encoding='cp1252').read())
426 self.intent_words = pickle.load(open(self.intent_load_words, 'rb'))
427 self.intent_classes = pickle.load(open(self.intent_load_classes, 'rb'))
428 self.tkizer = pickle.load(open(self.t_path,'rb'))
429
430 while True:
431 try:
432 userText = request.args.get('msg')
433 ints = self.predict class(userText, intent model, method='WE')
434 intent_response = self.getResponse(ints, self.intent_intents)
435 if (intent_response != "help'):
436 return str({intent_response)
437 elif (intent_response == 'help’):
438 response = self.respond_to_input(model, userText)
439 response = self.string clean(response)
440 return str(response)
431
442 except(KeyboardInterrupt, EOFError, SystemExit):
443 break
444
445
446
447 @app.route("/")
448 def home():
445 return render_template("index.html")
ase
451  (@app.route("/get")
452 def get_bot_response():
453 obj = chatbot()
454 obj.mode = 'inference’
ass response = obj.main()
456 return response
= 457
-] 458 app.run()
aca
-~ 19m5s  completed at 5:52 PM ®

x

Figure 16. Code to generate the chatbot’s response

12
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Hello! I am a customer support chatbot for a technology company.

How can I help you today?
Hello. What is your name?

My name is iBot, a technical customer support agent.

How can I help you, today?
I have a package I need to return.

Hi there, we are able to look into this for you.

Please send us a DM with your full name, address, and phone number.
Thank you. Can you help me track my package?
Please provide your tracking number. Tracking numbers are 16 digits in length.
4323987409325341
Thank you. Your package is on its way!
Wow! Thank you! You are amazing!
Thank you! We appreciate your feedback.
Are you a human or a robot?

I am part-human, part-machine. How can I help you today?

Wow! Well, thanks again for your help! See you later.

Thanks for chatting, Adios!

Message

Figure 17. Sample conversation had with the chatbot
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Hello! I am a customer support chatbot for a technology company.

How can I help you today?
Hi there, can you hear me?

Hello. My name is iBot. I am a technical customer support chatbot.

How can I help you today?
I have a product I need to return.

Hi, we are sorry to hear this.
Please DM us your contact info and we will look into this for you.

-C.H. https://t.co/wkjhdxwgrqg
Can you help me track a package?

Please provide your tracking number. Tracking numbers are 16 digits in length.

Thank you. Your package is on its way!

8342432198734325

Wow! You are amazing!

Thank you! We appreciate your feedback.

What is your name?

My name is iBot, a technical customer support agent.

How can I help you, today?

I am part-human, part-machine. How can I help you today?

Are you human or a machine?

Well, talk to you later!
Talk to you later!
I need to return a product.

Hi, we are sorry to hear this.

Please DM us your contact info and we will look into this for you.

Sure! Thanks for your help!

Thanks for chatting with me. See you!

Figure 18. Sample conversation had with the chatbot

14
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OPTION #2: NLP Chatbot Final Version

This paper presents a chatbot that uses Natural Language Processing (NLP) techniques to
produce coherent responses to user inputs. NLP is a research area exploring how computers can
manipulate speech or text for useful purposes (Chowdhury, 2003). Michael Mauldin, the
developer of the first Verbot, Julia, introduced the term chatbot in 1994 (Mondal et al., 2018).
Chatbots are text- or voice-based agents that aim to make conversations between humans and
machines (Lalwani et al., 2018; Setiaji & Wibowo, 2016).

Chatbots may be open- or closed-domain, as well as retrieval- or generative-based (Britz,
2016). This paper describes a closed-domain chatbot developed in Python that uses a
hybridization of generative- and retrieval-based methods to provide technical customer support
to users. The paper discusses the internal workings of these methods, including the sequence-to-
sequence (Seq2Seq) architecture and neural networks. Further, the paper discusses using 10-fold
cross-validation to compare models created with three distinct types of word representations: (a)
bag-of-words (BOW), (b) word embeddings from scratch, and (c¢) Global Vectors for Word
Representation (GloVe). Lastly, the paper gives an overview of how the chatbot generates its
responses, the Python tools and libraries implemented, and ideas for future research.
Closed- and Open-Domain Chatbots

Orin (2017) describes chatbots as either open- or closed-domain. Users can take
conversations anywhere in open-domain settings, and such conversations typically exist without
well-defined intentions or goals (Mondal et al., 2018). Britz (2016) states that because open-
domain chatbots require a certain amount of world knowledge to generate responses to the
infinite number of topics they can address, they are harder to implement than closed-domain

chatbots. Contrarily, the space of inputs and outputs is limited in closed-domain settings, where
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chatbots aim to achieve specific goals, such as providing technical customer support or shopping
assistance to users. Therefore, closed domain chatbots are easier to implement. This paper
describes a closed domain chatbot intended to provide technical customer support to users.
Retrieval- and Generative-Based Chatbots

Not only are chatbots closed- or open-domain, but also retrieval- or generative-based.
Retrieval-based approaches do not generate new text but use heuristics to choose between
predetermined replies, using similarity scores to match between user inputs and intents (Britz,
2016; Setiaji & Wibowo, 2016). On the other hand, Britz (2016) describes generative-based
models as harder to implement than retrieval-based approaches. Based on machine translation
techniques, generative-based chatbots translate between inputs and outputs rather than between
languages, generating new responses from the ground up without relying on handcrafted replies.

Britz (2016) describes both methods as having their advantages and disadvantages. For
instance, retrieval-based methods do not make grammatical mistakes but have difficulties
handling unseen data. In contrast, generative methods can handle novel data and are, therefore,
considered more intelligent than retrieval-based methods. However, they are also more difficult
to train, require more training data, and often make grammatical mistakes. This paper describes a
chatbot that implements a hybrid approach employing a combination of the two techniques.
Researchers use deep learning techniques for both retrieval- and generative-based approaches.
On the other hand, Sequence-to-sequence (Seq2Seq) architectures are specific to generative-
based models.
Sequence-to-Sequence Architecture

Palasundram et al. (2019) describe Seq2Seq models as the most researched to implement

chatbots and, surprisingly, as still in their infancy. It is useful to talk about Seq2Seq models in
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the context of Deep Neural Networks (DNNs). Sutskever et al. (2014) define DNNs as powerful
machine learning (ML) models with a significant limitation: they require their inputs and outputs
to be encoded with vectors of fixed dimensionalities. Therefore, sequential problems, including
speech recognition, machine translation, and question answering, best expressed by sequences of
varying lengths, pose significant challenges for DNNs. Seq2Seq models address these challenges
by using Long Short-Term Memory (LSTM) networks, special types of Recurrent Neural
Networks (RNNs). In effect, Seq2Seq models make minimal assumptions about the structure of
their input sequences and can learn long-term dependencies between inputs, making them ideal
for generative-based chatbots (Britz, 2016; Singh, 2020; Sutskever et al., 2014).
Encoder-Decoder Framework

Palasundram et al. (2019) describe Seq2Seq models as based on the Encoder-Decoder
framework of RNNs, comprised of three key components: (a) an embedding layer, which
converts inputs into variable-length vector representations of real numbers; (b) an encoder,
which produces intermediate states of fixed-length vectors by processing the embedding layer’s
output; and (c) a decoder, which generates a variable-length sentence from the encoder’s fixed-
length vectors. Further, Dugar (2021) describes a model’s encoder as capturing an input
sequence’s context in a hidden state vector, which it sends to a decoder to produce an output
sequence. Hidden state vectors can be initialized to any size, though typical starting values
include powers of 2 (i.e., 256, 512, or 1,024). Figure 1 shows that Prakash and
Kanagachidambaresan (2021) provide a default setting of 100 for the chatbot’s hidden state
vector size. Therefore, it may be useful to adjust this hyperparameter in future research to see if
it improves the model’s performance.

Generative-Based Model Overview (Model #1)
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Prakash and Kanagachidambaresan (2021) describe the generative-based chatbot as
implementing a Seq2Seq architecture. The architecture assumes the same prior distributions for
input and output words. Moreover, the model shares its embedding layer with its encoding and
decoding processes, improving its context sensitivity by retaining its encoder’s output, also
known as the thought vector. The model combines the thought vector with a dense vector
representation during response generation to help it remember the input sequence’s context,
creating an LSTM network in the model’s decoder conditioned on its input sequence (Sutskever
et al.,2014). Lines 153 — 215 of Figure 2 show the Seq2Seq model implementation in Python
code.

Hyperparameters of the Generative-Based Model (Model #1)

Palasundram et al. (2019) describe one key challenge of Seq2Seq architectures:
researchers need to tune many hyperparameters to produce good performing models, including
the model’s embedding type, embedding size, hidden units’ size, and dropout rate. Options for
the embedding type include word and character embeddings. Palasundram et al. found the
former to produce significantly better results than the latter in generative-based models trained
on Malay language data in educational settings. Typical embedding sizes range from 100 to 300.
Further, Palasundram et al. reduced their model’s likeliness to overfit its data by fine-tuning its
dropout rate. The dropout rate is a regularization technique in neural network-based models that
forces some neurons to cover for others by ignoring selected neurons at random, resulting in a
network more capable of generalization and less likely to overfit the data (Brownlee, 2016).

Figure 1 shows the Seq2Seq model’s initial hyperparameter settings that Prakash and
Kanagachidambaresan (2021) provide. The model’s initial vocabulary size is set to 50,000

words. Palasundram et al. (2019) write that researchers often limit the vocabulary sizes of
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Seq2Seq models to prevent them from consuming too many resources and prevent long training
times. For instance, it took 7.67 hours to train this chatbot’s generative-based model for 80
epochs on 50,000 records of the Customer Support on Twitter dataset using Google’s distributed,
GPU-accelerated hardware available through Google Colab Pro Notebooks. For comparison,
Palasundram et al. (2019) trained their generative-based model for 200 epochs. Other noteworthy
hyperparameter settings shown in Figure 1 include the size of the model’s embedding layer
(100), its maximum sequence length (30), and its dropout rate (0.3). An idea for future research
is to find the ideal settings for these hyperparameters to balance the model’s complexity in terms
of its bias-variance tradeoff (Claesen & De Moor, 2015).

Customer Support on Twitter Dataset

As mentioned, the Seq2Seq model this paper describes was trained for 80 epochs on the
Customer Support on Twitter dataset. The dataset is available through Kaggle.com as a 516.53
MB CSV file titled “twcs.csv” (Customer Support on Twitter | Kaggle, n.d.). “Customer
Support” describes this dataset as a large, modern corpus of mostly English conversations
between consumers and customer support agents that offers three main advantages over other
conversational text datasets: (a) it is focused, meaning that customers in the dataset discuss a
relatively limited number of service-related problems; (b) it is natural, meaning that the dataset
samples a broad range of the population using a common form of typed text; and (c) it is
succinct, meaning that the dataset offers concise descriptions of problems and solutions due to
Twitter’s 280-character limit.

Exploratory Data Analysis

“Customer Support” describes each row in the Customer Support on Twitter dataset as

representing a tweet, for which there exists at least one company reply for every customer
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request. All sensitive information in the dataset, including customer email addresses, phone
numbers, and usernames, have been replaced with masked values. The dataset contains

29 ¢

2,811,774 rows and seven columns: “tweet id,” “author id,” “inbound,” “created at,” “text,”
“response_tweet id,” and “in_response to tweet id.” The “text” column contains each tweet’s
text, and the “inbound” column indicates whether a tweet originated from a consumer or an
organization.

Figure 3 shows a descriptive overview of the dataset using Python’s info() function.
Figure 4 shows the dataset’s first five and last five rows. Figure 5 shows histograms displaying
the frequency distributions for three dataset characteristics, words per tweet, characters per
tweet, and stopwords per tweet, as well as the top 10 most frequently occurring unigrams,
bigrams, and trigrams. Stopwords are words that occur frequently in documents but contribute
little to their context and are, therefore, meaningless in terms of information retrieval, including
words like “the,” “and,” and “or” (Lo et al., 2005). On the other hand, Fenner (2019) describes
unigrams, bigrams, and trigrams as single words, adjacent word pairs, and three-word phrases,
respectively. For instance, “Let us know” is the most frequently occurring trigram in the data.
Next, Figure 6 shows a horizontal bar graph of the dataset’s top 20 most frequently occurring
organizations, the top three of which are Amazon, Apple, and Spotify. Finally, Figure 7 displays
a word cloud of the most frequently occurring unigrams and bigrams after filtering out words
with fewer than four characters. Popular unigrams and bigrams include “customer support,”
“happy,” “help,” “please,” and “sorry.”

Training the Generative-Based Model (Model #1)

Figure 8 shows the results of the chatbot’s initial training. As mentioned, it took 7.67

hours to train the model for 80 epochs using Google’s distributed, GPU-accelerated hardware
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available through Google Colab Pro Notebooks. Over 80 training epochs, the model reduced its
loss on its validation dataset from 4.78 to 2.78, a 52.91% reduction. The TXT file titled “80-
epochs.txt” found in the “training_results ”’ directory contains the results from all 80 training
epochs, as well as the model’s responses to 10 randomly selected input test sentences. Moreover,
once the model completes training, it saves its weights and architecture to a Hierarchical Data
Format Version 5 (H5) file, a file format commonly used in astronomy, engineering, genomics,
and physics, which supports large, complex, and heterogeneous data types (HS File Extension,
n.d.; Wasser, 2020). The chatbot then loads this file during its inference stage, which refers to the
process of using a trained ML algorithm to make a prediction, or, in this case, generate a
response (DeBeasi, 2019).

Testing the Generative-Based Model (Model #1)

The generative-based model was combined with the Python micro web framework,
Flask, to test its performance on novel data using a web browser. The chatbot begins by loading
the HS file saved during training, which it uses to produce responses to novel input. During
testing, the chatbot produced relevant results for customers looking to return products but was
limited in its scope of replies. For example, the chatbot apologized even when receiving a
greeting like “Hello!” Therefore, a second, retrieval-based model was implemented to help the
chatbot expand its knowledge base and add more variety to its output.
Training the Retrieval-Based Model (Model #2)

Skolo Online (2021) provided the template code for the chatbot’s retrieval-based model.
Mondal et al. (2018) define retrieval-based approaches as using heuristics to match user inputs to
files of intents and responding using correlated sets of predetermined responses. Therefore, the

retrieval-based model allows the chatbot to predict a user’s intent from their input and respond
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with a reply linked to that intent. The tasks that the chatbot can complete after adding the
retrieval-based approach include greeting customers, bidding them farewell, tracking packages,
looking up order numbers, providing customer support, and others.

The chatbot’s responses are contained within a JavaScript Object Notation (JSON) file
titled “intents_job_intents.json” in the “data/intents” subfolder, a portion of which is shown in
Figure 9. The main challenge of this methodology is that developers must handcraft the model’s
responses. Because all use case scenarios cannot be determined beforehand, the model may
produce unexpected results on unseen data. Figure 10 shows the Python code to train the
retrieval-based model. The following subsections describe the model in greater detail and present
steps to improve its accuracy.

Tokenization and Lemmatization

The model begins by tokenizing the user input found in the JSON file, referred to as
patterns, adding these patterns and their corresponding categories to a Python list object titled
“documents.” The categories represent user intents. The model then lemmatizes these words
using the WordNetLemmatizer from the NLTK package. Lemmatization is the process of
reducing a word to its dictionary form (e.g., “jump”) given its inflected variances (e.g.,
“jumped,” “jumps,” and “jumping”’) (Bergmanis & Goldwater, 2018). Next, the model converts
all words to lowercase, sorts them, and eliminates any duplicates so that only unique words
remain. The application then outputs the number of words and classes to the console. Further, it
uses the Python pickle module to save these objects to disk so it can later access them during
inference (“Understanding Python Pickling with Example,” 2017).

Bag-of-Words Approach
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Next, the model begins training on the processed JSON file. The retrieval-based approach
compares several word representation versions, one of which is the bag-of-words (BOW)
approach. Fenner (2019) describes the BOW approach as a simple yes/no table of document
words. Additionally, Kusner et al. (2015) write that the BOW approach is one of the two most
common ways to represent documents in NLP applications. They define the methodology as
implementing “a vector of word counts of dimensionality d, the size of the [model’s] dictionary”
(Kusner et al., 2015, p. 961). Further, Martins and Matsubara (2003) describe the BOW approach
as representing text documents in their tabular form, with each row representing a document and
each column a word.

Neural Network Architecture

After creating word representations for the dataset’s feature and target variables, the
program adds them to a Python list object as conjoined tuples. The application then shuffles this
preprocessed training data, converting it into an n-dimensional NumPy array before splitting it
into feature and target representations to feed into its neural network. The retrieval-based model
of the chatbot uses the Sequential class of the Keras API to implement a neural network for the
BOW approach. Skolo Online (2021) states that the first layer of this network contains 128
neurons, the second layer 64 neurons, and the output layer the number of user intents to predict.

Softmax Function and Stochastic Gradient Descent

Skolo Online (2021) states that the output layer of the neural network uses the softmax
function as its activation function. The softmax function converts the network’s weighted sum
values into probabilities representing the likelithood of an input belonging to a particular class
(Brownlee, 2020). Skolo Online states that using a Stochastic Gradient Descent (SGD) with

Nesterov momentum performs well for this model. Nesterov momentum is a general approach to
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modifying gradient descent-type methods to improve their initial convergence (Nesterov'’s
Gradient Acceleration - Calculus, n.d.).
Cross-Validation

The chatbot explores the effects of multiple word representations on its retrieval-based
approach using 10-fold cross-validation. Brownlee (2018) describes cross-validation as a
resampling method to evaluate ML models on limited and unseen data. Notably, in cross-
validation, each record is used in the holdout set 1 time and used to train the model k — 1 times.
This study compares three types of word representations in its retrieval-based approach: (a) Bag-
of-words (BOW), (b) word embeddings created from scratch, and (¢) pre-trained word
embeddings obtained from a Global Vectors for Word Representation (GloVe) file.
Word Embeddings, Global Vectors for Word Representation, and Transfer Learning

Levy and Goldberg (2014) define word embeddings as dense vector representations of
words derived from neural network-based training methods that convey their semantic and
syntactic similarities. Additionally, Pennington et al. (2014) describe GloVe as an unsupervised
learning algorithm to obtain word vector representations. The GloVe file, titled
“glove.840B.300d.txt,” is 2.03 GB, contains 840 billion tokens, and has a vocabulary of size 2.2
million. The application downloads the file from its corresponding URL if it does not already
exist. The file is so large that it requires using Google’s servers to train the chatbot.

Moreover, using the pre-trained word embeddings available from the GloVe file
demonstrates an example of transfer learning (TL). Brownlee (2017) describes TL as reusing
models developed for one purpose as the starting point for others. In the case of GloVe, training

is performed on global word-word co-occurrence counts, producing a word vector space with a
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meaningful substructure that achieved 75% accuracy on the word analogy dataset (Pennington et
al., 2014).

Figures 11 — 12 present the Python code to construct the pre-trained embedding model
and the line graph that compares representations across three 10-fold cross-validations. Figures
13 — 15 display these graphs. The pre-trained word embeddings (avg. acc. = 82.9%)
outperformed the other two approaches on all three occasions. Additionally, the BOW approach
(avg. acc. = 74.8%) consistently outperformed the embeddings created from scratch (avg. acc. =
58.8%). Therefore, both the BOW model and the model using pre-trained embeddings are trained
on the entire dataset and saved for the chatbot to use during inference. Inference refers to putting
a model into action on live data to produce actionable output and is what the chatbot uses to
generate its responses (What Is Machine Learning Inference?, n.d.).

Generating Responses via Model Hybridization

To generate responses during inference, the architecture loads both its generative- and
retrieval-based models. When users converse with the chatbot, it retrieves the user’s input from
the chat textbox and uses its retrieval-based model to predict a user’s intent. If the model predicts
the user needs help with a technical problem, such as returning a product, the chatbot uses its
generative-based model to create a response from scratch. If, however, the chatbot predicts the
user is not requesting help for a technical problem but has a different intent, it responds using its
retrieval-based approach to select a response from a repository of handcrafted replies. Therefore,
the chatbot can respond to a wider variety of user inputs by hybridizing its generative- and
retrieval-based approaches.

Figure 16 shows the Python code the model uses to generate responses. Figures 17 — 18

show two sample conversations had with the chatbot. To run the chatbot, all one needs to do is
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install the necessary libraries, described next, and run the “app.py” file. However, the chatbot
performs better using Google’s distributed, GPU-accelerated hardware than when run locally.
Additionally, each time the chatbot’s JSON file is updated, the “intents_training.py” file needs to
be re-run to re-train the chatbot, which also requires using Google’s distributed, GPU-accelerated
Servers.

For these reasons, this submission also includes the .ipynb and .py files corresponding to
the Google Colab Notebook files located in its “colab” folder. To train the generative-based
model requires updating the chatbot’s mode to “training” rather than “inference.” Finally, a
GitHub repository at the following URL mirrors the files included with this submission:
https://github.com/sminerport/CSC525-Principles-of-ML-Chatbot. However, GitHub does not
accept files greater than 100MB, excluding the H5 file of the Seq2Seq model and the Customer
Support on Twitter dataset. Additional instructions for training and running the chatbot are
available in the “README.md” file.

Python Tools and Libraries

The following gives a brief overview of the Python tools and libraries implemented by
the chatbot, including NumPy, pandas, scikit-learn, TensorFlow, Keras, NLTK, and Flask.
NumPy is a Python library for scientific computing, at the core of which is the ndarray, a
multidimensional array object. NumPy provides various routines, including mathematical and
logical, for fast array operations (What Is NumPy? — NumPy v1.21 Manual, n.d.). pandas is a
Python package that provides expressive data structures for working with relational data,
including Series and DataFrames (Package Overview — Pandas 1.3.3 Documentation, n.d.).
scikit-learn 1s a simple and efficient open-source tool for predictive analytics, which provides

many supervised and unsupervised ML algorithms (What Is Scikit-Learn?, n.d.). TensorFlow is
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an end-to-end open-source platform for ML with a comprehensive ecosystem of tools that allow
researchers to push the state-of-the-art in ML (7TensorFlow, n.d.).

Additionally, Keras is an industry-strength framework built on top of TensorFlow that
covers every step of the ML workflow and can scale to large clusters of GPUs (Keras: The
Python Deep Learning API, n.d.). NLTK stands for the “Natural Language Toolkit,” a platform
that allows Python programs to handle human language data by providing a suite of text
processing libraries for classification, tokenization, stemming, tagging, and parsing (Natural
Language Toolkit — NLTK 3.6.3 Documentation, n.d.). Finally, Flask is a Python API for
developing web applications (“Python | Introduction to Web Development Using Flask,” 2018).
Implementing the Flask framework allows for conversing with the chatbot via a web browser.

Conclusion

In conclusion, this paper described a closed-domain chatbot that used a hybridization of
generative- and retrieval-based methods to provide technical customer support to users. The
paper described open- and closed-domain chatbots, as well as those that are retrieval- and
generative-based. The paper also discussed sequence-to-sequence (Seq2Seq) architectures,
encoder and decoder frameworks, model hyperparameters, the Customer Support on Twitter
dataset, and retrieval-based approaches like tokenization and lemmatization, bag-of-words
(BOW), and neural networks. By hybridizing its generative- and retrieval-based approaches, the
chatbot increased its depth of knowledge and variety of responses. Further, 10-fold cross-
validation was used to compare the effect that different word representations had on the chatbot’s
retrieval-based model, the most effective of which was found to be the pre-trained word
embeddings provided by GloVe. Finally, the paper discussed how the chatbot generates its

responses, the Python tools and libraries used to construct it, and ideas for future research.
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