
Running head: NLP CHATBOT FINAL VERSION 1

OPTION #2: NLP Chatbot Final Version

Scott Miner

Colorado State University – Global Campus

NLP CHATBOT FINAL VERSION 2

Abstract

Figure 1. The chatbot’s constructor and its hyperparameters

NLP CHATBOT FINAL VERSION 3

Figure 2. Sequence-to-sequence (Seq2Seq) model

NLP CHATBOT FINAL VERSION 4

Figure 3. Overview of the Customer Support on Twitter dataset

Figure 4. The first and last five rows of the Customer Support on Twitter dataset

NLP CHATBOT FINAL VERSION 5

Figure 5. Histograms and the top 10 most frequent n-grams in the Customer Support on Twitter dataset

NLP CHATBOT FINAL VERSION 6

Figure 6. Top 20 organizations in the Customer Support on Twitter dataset with the most tweets

Figure 7. Word cloud displaying the most frequently occurring words in the Customer Support on Twitter dataset

NLP CHATBOT FINAL VERSION 7

Figure 8. The results after training the chatbot for 80 epochs using Google’s servers available through Google Colab Pro Notebooks

Figure 9. A portion of the JSON intents file used to train the chatbot’s retrieval-based model

NLP CHATBOT FINAL VERSION 8

Figure 10. Python code that implements training for the chatbot’s retrieval-based model

NLP CHATBOT FINAL VERSION 9

Figure 11. Code to create a model using pre-trained word embeddings

NLP CHATBOT FINAL VERSION 10

Figure 12. Code to generate the cross-validation plots

NLP CHATBOT FINAL VERSION 11

Figure 13. 10-fold cross-validation comparing three different word representations

Figure 14. 10-fold cross-validation comparing three different word representations

Figure 15. 10-fold cross-validation comparing three different word representations

NLP CHATBOT FINAL VERSION 12

Figure 16. Code to generate the chatbot’s response

NLP CHATBOT FINAL VERSION 13

Figure 17. Sample conversation had with the chatbot

NLP CHATBOT FINAL VERSION 14

Figure 18. Sample conversation had with the chatbot

NLP CHATBOT FINAL VERSION 15

Contents

Abstract ... 2

Contents .. 15

Closed- and Open-Domain Chatbots .. 16

Retrieval- and Generative-Based Chatbots ... 17

Sequence-to-Sequence Architecture ... 17

Encoder-Decoder Framework ... 18

Generative-Based Model Overview (Model #1) ... 18

Hyperparameters of the Generative-Based Model (Model #1) ... 19

Customer Support on Twitter Dataset... 20

Training the Generative-Based Model (Model #1) ... 21

Testing the Generative-Based Model (Model #1) .. 22

Training the Retrieval-Based Model (Model #2).. 22

Tokenization and Lemmatization ... 23

Bag-of-Words Approach ... 23

Neural Network Architecture .. 24

Softmax Function and Stochastic Gradient Descent ... 24

Cross-Validation ... 25

Word Embeddings, Global Vectors for Word Representation, and Transfer Learning............ 25

Generating Responses via Model Hybridization .. 26

Python Tools and Libraries ... 27

Conclusion .. 28

References ... 29

NLP CHATBOT FINAL VERSION 16

OPTION #2: NLP Chatbot Final Version

This paper presents a chatbot that uses Natural Language Processing (NLP) techniques to

produce coherent responses to user inputs. NLP is a research area exploring how computers can

manipulate speech or text for useful purposes (Chowdhury, 2003). Michael Mauldin, the

developer of the first Verbot, Julia, introduced the term chatbot in 1994 (Mondal et al., 2018).

Chatbots are text- or voice-based agents that aim to make conversations between humans and

machines (Lalwani et al., 2018; Setiaji & Wibowo, 2016).

Chatbots may be open- or closed-domain, as well as retrieval- or generative-based (Britz,

2016). This paper describes a closed-domain chatbot developed in Python that uses a

hybridization of generative- and retrieval-based methods to provide technical customer support

to users. The paper discusses the internal workings of these methods, including the sequence-to-

sequence (Seq2Seq) architecture and neural networks. Further, the paper discusses using 10-fold

cross-validation to compare models created with three distinct types of word representations: (a)

bag-of-words (BOW), (b) word embeddings from scratch, and (c) Global Vectors for Word

Representation (GloVe). Lastly, the paper gives an overview of how the chatbot generates its

responses, the Python tools and libraries implemented, and ideas for future research.

Closed- and Open-Domain Chatbots

 Orin (2017) describes chatbots as either open- or closed-domain. Users can take

conversations anywhere in open-domain settings, and such conversations typically exist without

well-defined intentions or goals (Mondal et al., 2018). Britz (2016) states that because open-

domain chatbots require a certain amount of world knowledge to generate responses to the

infinite number of topics they can address, they are harder to implement than closed-domain

chatbots. Contrarily, the space of inputs and outputs is limited in closed-domain settings, where

NLP CHATBOT FINAL VERSION 17

chatbots aim to achieve specific goals, such as providing technical customer support or shopping

assistance to users. Therefore, closed domain chatbots are easier to implement. This paper

describes a closed domain chatbot intended to provide technical customer support to users.

Retrieval- and Generative-Based Chatbots

 Not only are chatbots closed- or open-domain, but also retrieval- or generative-based.

Retrieval-based approaches do not generate new text but use heuristics to choose between

predetermined replies, using similarity scores to match between user inputs and intents (Britz,

2016; Setiaji & Wibowo, 2016). On the other hand, Britz (2016) describes generative-based

models as harder to implement than retrieval-based approaches. Based on machine translation

techniques, generative-based chatbots translate between inputs and outputs rather than between

languages, generating new responses from the ground up without relying on handcrafted replies.

Britz (2016) describes both methods as having their advantages and disadvantages. For

instance, retrieval-based methods do not make grammatical mistakes but have difficulties

handling unseen data. In contrast, generative methods can handle novel data and are, therefore,

considered more intelligent than retrieval-based methods. However, they are also more difficult

to train, require more training data, and often make grammatical mistakes. This paper describes a

chatbot that implements a hybrid approach employing a combination of the two techniques.

Researchers use deep learning techniques for both retrieval- and generative-based approaches.

On the other hand, Sequence-to-sequence (Seq2Seq) architectures are specific to generative-

based models.

Sequence-to-Sequence Architecture

Palasundram et al. (2019) describe Seq2Seq models as the most researched to implement

chatbots and, surprisingly, as still in their infancy. It is useful to talk about Seq2Seq models in

NLP CHATBOT FINAL VERSION 18

the context of Deep Neural Networks (DNNs). Sutskever et al. (2014) define DNNs as powerful

machine learning (ML) models with a significant limitation: they require their inputs and outputs

to be encoded with vectors of fixed dimensionalities. Therefore, sequential problems, including

speech recognition, machine translation, and question answering, best expressed by sequences of

varying lengths, pose significant challenges for DNNs. Seq2Seq models address these challenges

by using Long Short-Term Memory (LSTM) networks, special types of Recurrent Neural

Networks (RNNs). In effect, Seq2Seq models make minimal assumptions about the structure of

their input sequences and can learn long-term dependencies between inputs, making them ideal

for generative-based chatbots (Britz, 2016; Singh, 2020; Sutskever et al., 2014).

Encoder-Decoder Framework

Palasundram et al. (2019) describe Seq2Seq models as based on the Encoder-Decoder

framework of RNNs, comprised of three key components: (a) an embedding layer, which

converts inputs into variable-length vector representations of real numbers; (b) an encoder,

which produces intermediate states of fixed-length vectors by processing the embedding layer’s

output; and (c) a decoder, which generates a variable-length sentence from the encoder’s fixed-

length vectors. Further, Dugar (2021) describes a model’s encoder as capturing an input

sequence’s context in a hidden state vector, which it sends to a decoder to produce an output

sequence. Hidden state vectors can be initialized to any size, though typical starting values

include powers of 2 (i.e., 256, 512, or 1,024). Figure 1 shows that Prakash and

Kanagachidambaresan (2021) provide a default setting of 100 for the chatbot’s hidden state

vector size. Therefore, it may be useful to adjust this hyperparameter in future research to see if

it improves the model’s performance.

Generative-Based Model Overview (Model #1)

NLP CHATBOT FINAL VERSION 19

Prakash and Kanagachidambaresan (2021) describe the generative-based chatbot as

implementing a Seq2Seq architecture. The architecture assumes the same prior distributions for

input and output words. Moreover, the model shares its embedding layer with its encoding and

decoding processes, improving its context sensitivity by retaining its encoder’s output, also

known as the thought vector. The model combines the thought vector with a dense vector

representation during response generation to help it remember the input sequence’s context,

creating an LSTM network in the model’s decoder conditioned on its input sequence (Sutskever

et al., 2014). Lines 153 – 215 of Figure 2 show the Seq2Seq model implementation in Python

code.

Hyperparameters of the Generative-Based Model (Model #1)

Palasundram et al. (2019) describe one key challenge of Seq2Seq architectures:

researchers need to tune many hyperparameters to produce good performing models, including

the model’s embedding type, embedding size, hidden units’ size, and dropout rate. Options for

the embedding type include word and character embeddings. Palasundram et al. found the

former to produce significantly better results than the latter in generative-based models trained

on Malay language data in educational settings. Typical embedding sizes range from 100 to 300.

Further, Palasundram et al. reduced their model’s likeliness to overfit its data by fine-tuning its

dropout rate. The dropout rate is a regularization technique in neural network-based models that

forces some neurons to cover for others by ignoring selected neurons at random, resulting in a

network more capable of generalization and less likely to overfit the data (Brownlee, 2016).

Figure 1 shows the Seq2Seq model’s initial hyperparameter settings that Prakash and

Kanagachidambaresan (2021) provide. The model’s initial vocabulary size is set to 50,000

words. Palasundram et al. (2019) write that researchers often limit the vocabulary sizes of

NLP CHATBOT FINAL VERSION 20

Seq2Seq models to prevent them from consuming too many resources and prevent long training

times. For instance, it took 7.67 hours to train this chatbot’s generative-based model for 80

epochs on 50,000 records of the Customer Support on Twitter dataset using Google’s distributed,

GPU-accelerated hardware available through Google Colab Pro Notebooks. For comparison,

Palasundram et al. (2019) trained their generative-based model for 200 epochs. Other noteworthy

hyperparameter settings shown in Figure 1 include the size of the model’s embedding layer

(100), its maximum sequence length (30), and its dropout rate (0.3). An idea for future research

is to find the ideal settings for these hyperparameters to balance the model’s complexity in terms

of its bias-variance tradeoff (Claesen & De Moor, 2015).

Customer Support on Twitter Dataset

As mentioned, the Seq2Seq model this paper describes was trained for 80 epochs on the

Customer Support on Twitter dataset. The dataset is available through Kaggle.com as a 516.53

MB CSV file titled “twcs.csv” (Customer Support on Twitter | Kaggle, n.d.). “Customer

Support” describes this dataset as a large, modern corpus of mostly English conversations

between consumers and customer support agents that offers three main advantages over other

conversational text datasets: (a) it is focused, meaning that customers in the dataset discuss a

relatively limited number of service-related problems; (b) it is natural, meaning that the dataset

samples a broad range of the population using a common form of typed text; and (c) it is

succinct, meaning that the dataset offers concise descriptions of problems and solutions due to

Twitter’s 280-character limit.

Exploratory Data Analysis

“Customer Support” describes each row in the Customer Support on Twitter dataset as

representing a tweet, for which there exists at least one company reply for every customer

NLP CHATBOT FINAL VERSION 21

request. All sensitive information in the dataset, including customer email addresses, phone

numbers, and usernames, have been replaced with masked values. The dataset contains

2,811,774 rows and seven columns: “tweet_id,” “author_id,” “inbound,” “created_at,” “text,”

“response_tweet_id,” and “in_response_to_tweet_id.” The “text” column contains each tweet’s

text, and the “inbound” column indicates whether a tweet originated from a consumer or an

organization.

Figure 3 shows a descriptive overview of the dataset using Python’s info() function.

Figure 4 shows the dataset’s first five and last five rows. Figure 5 shows histograms displaying

the frequency distributions for three dataset characteristics, words per tweet, characters per

tweet, and stopwords per tweet, as well as the top 10 most frequently occurring unigrams,

bigrams, and trigrams. Stopwords are words that occur frequently in documents but contribute

little to their context and are, therefore, meaningless in terms of information retrieval, including

words like “the,” “and,” and “or” (Lo et al., 2005). On the other hand, Fenner (2019) describes

unigrams, bigrams, and trigrams as single words, adjacent word pairs, and three-word phrases,

respectively. For instance, “Let us know” is the most frequently occurring trigram in the data.

Next, Figure 6 shows a horizontal bar graph of the dataset’s top 20 most frequently occurring

organizations, the top three of which are Amazon, Apple, and Spotify. Finally, Figure 7 displays

a word cloud of the most frequently occurring unigrams and bigrams after filtering out words

with fewer than four characters. Popular unigrams and bigrams include “customer support,”

“happy,” “help,” “please,” and “sorry.”

Training the Generative-Based Model (Model #1)

Figure 8 shows the results of the chatbot’s initial training. As mentioned, it took 7.67

hours to train the model for 80 epochs using Google’s distributed, GPU-accelerated hardware

NLP CHATBOT FINAL VERSION 22

available through Google Colab Pro Notebooks. Over 80 training epochs, the model reduced its

loss on its validation dataset from 4.78 to 2.78, a 52.91% reduction. The TXT file titled “80-

epochs.txt” found in the “training_results” directory contains the results from all 80 training

epochs, as well as the model’s responses to 10 randomly selected input test sentences. Moreover,

once the model completes training, it saves its weights and architecture to a Hierarchical Data

Format Version 5 (H5) file, a file format commonly used in astronomy, engineering, genomics,

and physics, which supports large, complex, and heterogeneous data types (H5 File Extension,

n.d.; Wasser, 2020). The chatbot then loads this file during its inference stage, which refers to the

process of using a trained ML algorithm to make a prediction, or, in this case, generate a

response (DeBeasi, 2019).

Testing the Generative-Based Model (Model #1)

The generative-based model was combined with the Python micro web framework,

Flask, to test its performance on novel data using a web browser. The chatbot begins by loading

the H5 file saved during training, which it uses to produce responses to novel input. During

testing, the chatbot produced relevant results for customers looking to return products but was

limited in its scope of replies. For example, the chatbot apologized even when receiving a

greeting like “Hello!” Therefore, a second, retrieval-based model was implemented to help the

chatbot expand its knowledge base and add more variety to its output.

Training the Retrieval-Based Model (Model #2)

Skolo Online (2021) provided the template code for the chatbot’s retrieval-based model.

Mondal et al. (2018) define retrieval-based approaches as using heuristics to match user inputs to

files of intents and responding using correlated sets of predetermined responses. Therefore, the

retrieval-based model allows the chatbot to predict a user’s intent from their input and respond

NLP CHATBOT FINAL VERSION 23

with a reply linked to that intent. The tasks that the chatbot can complete after adding the

retrieval-based approach include greeting customers, bidding them farewell, tracking packages,

looking up order numbers, providing customer support, and others.

The chatbot’s responses are contained within a JavaScript Object Notation (JSON) file

titled “intents_job_intents.json” in the “data/intents” subfolder, a portion of which is shown in

Figure 9. The main challenge of this methodology is that developers must handcraft the model’s

responses. Because all use case scenarios cannot be determined beforehand, the model may

produce unexpected results on unseen data. Figure 10 shows the Python code to train the

retrieval-based model. The following subsections describe the model in greater detail and present

steps to improve its accuracy.

Tokenization and Lemmatization

The model begins by tokenizing the user input found in the JSON file, referred to as

patterns, adding these patterns and their corresponding categories to a Python list object titled

“documents.” The categories represent user intents. The model then lemmatizes these words

using the WordNetLemmatizer from the NLTK package. Lemmatization is the process of

reducing a word to its dictionary form (e.g., “jump”) given its inflected variances (e.g.,

“jumped,” “jumps,” and “jumping”) (Bergmanis & Goldwater, 2018). Next, the model converts

all words to lowercase, sorts them, and eliminates any duplicates so that only unique words

remain. The application then outputs the number of words and classes to the console. Further, it

uses the Python pickle module to save these objects to disk so it can later access them during

inference (“Understanding Python Pickling with Example,” 2017).

Bag-of-Words Approach

NLP CHATBOT FINAL VERSION 24

Next, the model begins training on the processed JSON file. The retrieval-based approach

compares several word representation versions, one of which is the bag-of-words (BOW)

approach. Fenner (2019) describes the BOW approach as a simple yes/no table of document

words. Additionally, Kusner et al. (2015) write that the BOW approach is one of the two most

common ways to represent documents in NLP applications. They define the methodology as

implementing “a vector of word counts of dimensionality d, the size of the [model’s] dictionary”

(Kusner et al., 2015, p. 961). Further, Martins and Matsubara (2003) describe the BOW approach

as representing text documents in their tabular form, with each row representing a document and

each column a word.

Neural Network Architecture

After creating word representations for the dataset’s feature and target variables, the

program adds them to a Python list object as conjoined tuples. The application then shuffles this

preprocessed training data, converting it into an n-dimensional NumPy array before splitting it

into feature and target representations to feed into its neural network. The retrieval-based model

of the chatbot uses the Sequential class of the Keras API to implement a neural network for the

BOW approach. Skolo Online (2021) states that the first layer of this network contains 128

neurons, the second layer 64 neurons, and the output layer the number of user intents to predict.

Softmax Function and Stochastic Gradient Descent

Skolo Online (2021) states that the output layer of the neural network uses the softmax

function as its activation function. The softmax function converts the network’s weighted sum

values into probabilities representing the likelihood of an input belonging to a particular class

(Brownlee, 2020). Skolo Online states that using a Stochastic Gradient Descent (SGD) with

Nesterov momentum performs well for this model. Nesterov momentum is a general approach to

NLP CHATBOT FINAL VERSION 25

modifying gradient descent-type methods to improve their initial convergence (Nesterov’s

Gradient Acceleration - Calculus, n.d.).

Cross-Validation

 The chatbot explores the effects of multiple word representations on its retrieval-based

approach using 10-fold cross-validation. Brownlee (2018) describes cross-validation as a

resampling method to evaluate ML models on limited and unseen data. Notably, in cross-

validation, each record is used in the holdout set 1 time and used to train the model 𝑘 − 1 times.

This study compares three types of word representations in its retrieval-based approach: (a) Bag-

of-words (BOW), (b) word embeddings created from scratch, and (c) pre-trained word

embeddings obtained from a Global Vectors for Word Representation (GloVe) file.

Word Embeddings, Global Vectors for Word Representation, and Transfer Learning

Levy and Goldberg (2014) define word embeddings as dense vector representations of

words derived from neural network-based training methods that convey their semantic and

syntactic similarities. Additionally, Pennington et al. (2014) describe GloVe as an unsupervised

learning algorithm to obtain word vector representations. The GloVe file, titled

“glove.840B.300d.txt,” is 2.03 GB, contains 840 billion tokens, and has a vocabulary of size 2.2

million. The application downloads the file from its corresponding URL if it does not already

exist. The file is so large that it requires using Google’s servers to train the chatbot.

Moreover, using the pre-trained word embeddings available from the GloVe file

demonstrates an example of transfer learning (TL). Brownlee (2017) describes TL as reusing

models developed for one purpose as the starting point for others. In the case of GloVe, training

is performed on global word-word co-occurrence counts, producing a word vector space with a

NLP CHATBOT FINAL VERSION 26

meaningful substructure that achieved 75% accuracy on the word analogy dataset (Pennington et

al., 2014).

Figures 11 – 12 present the Python code to construct the pre-trained embedding model

and the line graph that compares representations across three 10-fold cross-validations. Figures

13 – 15 display these graphs. The pre-trained word embeddings (avg. acc. = 82.9%)

outperformed the other two approaches on all three occasions. Additionally, the BOW approach

(avg. acc. = 74.8%) consistently outperformed the embeddings created from scratch (avg. acc. =

58.8%). Therefore, both the BOW model and the model using pre-trained embeddings are trained

on the entire dataset and saved for the chatbot to use during inference. Inference refers to putting

a model into action on live data to produce actionable output and is what the chatbot uses to

generate its responses (What Is Machine Learning Inference?, n.d.).

Generating Responses via Model Hybridization

To generate responses during inference, the architecture loads both its generative- and

retrieval-based models. When users converse with the chatbot, it retrieves the user’s input from

the chat textbox and uses its retrieval-based model to predict a user’s intent. If the model predicts

the user needs help with a technical problem, such as returning a product, the chatbot uses its

generative-based model to create a response from scratch. If, however, the chatbot predicts the

user is not requesting help for a technical problem but has a different intent, it responds using its

retrieval-based approach to select a response from a repository of handcrafted replies. Therefore,

the chatbot can respond to a wider variety of user inputs by hybridizing its generative- and

retrieval-based approaches.

Figure 16 shows the Python code the model uses to generate responses. Figures 17 – 18

show two sample conversations had with the chatbot. To run the chatbot, all one needs to do is

NLP CHATBOT FINAL VERSION 27

install the necessary libraries, described next, and run the “app.py” file. However, the chatbot

performs better using Google’s distributed, GPU-accelerated hardware than when run locally.

Additionally, each time the chatbot’s JSON file is updated, the “intents_training.py” file needs to

be re-run to re-train the chatbot, which also requires using Google’s distributed, GPU-accelerated

servers.

For these reasons, this submission also includes the .ipynb and .py files corresponding to

the Google Colab Notebook files located in its “colab” folder. To train the generative-based

model requires updating the chatbot’s mode to “training” rather than “inference.” Finally, a

GitHub repository at the following URL mirrors the files included with this submission:

https://github.com/sminerport/CSC525-Principles-of-ML-Chatbot. However, GitHub does not

accept files greater than 100MB, excluding the H5 file of the Seq2Seq model and the Customer

Support on Twitter dataset. Additional instructions for training and running the chatbot are

available in the “README.md” file.

Python Tools and Libraries

The following gives a brief overview of the Python tools and libraries implemented by

the chatbot, including NumPy, pandas, scikit-learn, TensorFlow, Keras, NLTK, and Flask.

NumPy is a Python library for scientific computing, at the core of which is the ndarray, a

multidimensional array object. NumPy provides various routines, including mathematical and

logical, for fast array operations (What Is NumPy? — NumPy v1.21 Manual, n.d.). pandas is a

Python package that provides expressive data structures for working with relational data,

including Series and DataFrames (Package Overview — Pandas 1.3.3 Documentation, n.d.).

scikit-learn is a simple and efficient open-source tool for predictive analytics, which provides

many supervised and unsupervised ML algorithms (What Is Scikit-Learn?, n.d.). TensorFlow is

NLP CHATBOT FINAL VERSION 28

an end-to-end open-source platform for ML with a comprehensive ecosystem of tools that allow

researchers to push the state-of-the-art in ML (TensorFlow, n.d.).

Additionally, Keras is an industry-strength framework built on top of TensorFlow that

covers every step of the ML workflow and can scale to large clusters of GPUs (Keras: The

Python Deep Learning API, n.d.). NLTK stands for the “Natural Language Toolkit,” a platform

that allows Python programs to handle human language data by providing a suite of text

processing libraries for classification, tokenization, stemming, tagging, and parsing (Natural

Language Toolkit — NLTK 3.6.3 Documentation, n.d.). Finally, Flask is a Python API for

developing web applications (“Python | Introduction to Web Development Using Flask,” 2018).

Implementing the Flask framework allows for conversing with the chatbot via a web browser.

Conclusion

 In conclusion, this paper described a closed-domain chatbot that used a hybridization of

generative- and retrieval-based methods to provide technical customer support to users. The

paper described open- and closed-domain chatbots, as well as those that are retrieval- and

generative-based. The paper also discussed sequence-to-sequence (Seq2Seq) architectures,

encoder and decoder frameworks, model hyperparameters, the Customer Support on Twitter

dataset, and retrieval-based approaches like tokenization and lemmatization, bag-of-words

(BOW), and neural networks. By hybridizing its generative- and retrieval-based approaches, the

chatbot increased its depth of knowledge and variety of responses. Further, 10-fold cross-

validation was used to compare the effect that different word representations had on the chatbot’s

retrieval-based model, the most effective of which was found to be the pre-trained word

embeddings provided by GloVe. Finally, the paper discussed how the chatbot generates its

responses, the Python tools and libraries used to construct it, and ideas for future research.

NLP CHATBOT FINAL VERSION 29

References

Bergmanis, T., & Goldwater, S. (2018). Context-Sensitive Neural Lemmatization with Lematus.

Proceedings of the 2018 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), 1391–1400. https://doi.org/10.18653/v1/N18-1126

Britz, D. (2016, April). Deep Learning for Chatbots, Part 1 – Introduction. KDnuggets.

https://www.kdnuggets.com/deep-learning-for-chatbots-part-1-introduction.html/

Brownlee, J. (2016, June 19). Dropout Regularization in Deep Learning Models with Keras.

Machine Learning Mastery. https://machinelearningmastery.com/dropout-regularization-

deep-learning-models-keras/

Brownlee, J. (2017, December 19). A Gentle Introduction to Transfer Learning for Deep

Learning. Machine Learning Mastery. https://machinelearningmastery.com/transfer-

learning-for-deep-learning/

Brownlee, J. (2018, May 22). A Gentle Introduction to k-fold Cross-Validation. Machine

Learning Mastery. https://machinelearningmastery.com/k-fold-cross-validation/

Brownlee, J. (2020, October 18). Softmax Activation Function with Python. Machine Learning

Mastery. https://machinelearningmastery.com/softmax-activation-function-with-python/

Chowdhury, G. G. (2003). Natural language processing. Annual Review of Information Science

and Technology, 37(1), 51–89.

Claesen, M., & De Moor, B. (2015). Hyperparameter Search in Machine Learning.

ArXiv:1502.02127 [Cs, Stat]. http://arxiv.org/abs/1502.02127

Customer Support on Twitter | Kaggle. (n.d.). Retrieved September 26, 2021, from

https://www.kaggle.com/thoughtvector/customer-support-on-twitter

NLP CHATBOT FINAL VERSION 30

DeBeasi, P. (2019, February 14). Training versus Inference. Paul DeBeasi.

https://blogs.gartner.com/paul-debeasi/2019/02/14/training-versus-inference/

Fenner, M. (2019). Machine Learning in Python for Everyone. Addison-Wesley.

H5 File Extension—What is an .h5 file, and how do I open it? (n.d.). Retrieved October 7, 2021,

from https://fileinfo.com/extension/h5

Keras: The Python deep learning API. (n.d.). Retrieved October 5, 2021, from https://keras.io/

Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015). From word embeddings to document

distances. International Conference on Machine Learning, 957–966.

Lalwani, T., Bhalotia, S., Pal, A., Bisen, S., & Rathod, V. (2018). Implementation of a Chatbot

System using AI and NLP. International Journal of Innovative Research in Computer

Science & Technology, 6, 26–30. https://doi.org/10.21276/ijircst.2018.6.3.2

Levy, O., & Goldberg, Y. (2014). Dependency-Based Word Embeddings. Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers), 302–308. https://doi.org/10.3115/v1/P14-2050

Lo, R. T.-W., He, B., & Ounis, I. (2005). Automatically building a stopword list for an

information retrieval system. Journal on Digital Information Management: Special Issue

on the 5th Dutch-Belgian Information Retrieval Workshop (DIR), 5, 17–24.

Martins, C., & Matsubara, E. (2003). Reducing the dimensionality of bag-of-words text

representation used by learning algorithms.

Mondal, A., Dey, M., Das, D., Nagpal, S., & Garda, K. (2018). Chatbot: An automated

conversation system for the educational domain. 2018 International Joint Symposium on

Artificial Intelligence and Natural Language Processing (ISAI-NLP), 1–5.

https://doi.org/10.1109/iSAI-NLP.2018.8692927

NLP CHATBOT FINAL VERSION 31

Natural Language Toolkit—NLTK 3.6.3 documentation. (n.d.). Retrieved October 5, 2021, from

https://www.nltk.org/

Nesterov’s gradient acceleration—Calculus. (n.d.). Retrieved October 5, 2021, from

https://calculus.subwiki.org/wiki/Nesterov%27s_gradient_acceleration

Orin, T. D. (2017). Implementation of a Bangla chatbot. BRAC University.

Package overview—Pandas 1.3.3 documentation. (n.d.). Retrieved October 5, 2021, from

https://pandas.pydata.org/pandas-docs/stable/getting_started/overview.html

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word

representation. Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 1532–1543.

Prakash, K. B., & Kanagachidambaresan, G. R. (2021). Programming with TensorFlow:

Solution for Edge Computing Applications. Springer Nature.

Python | Introduction to Web development using Flask. (2018, October 16). GeeksforGeeks.

https://www.geeksforgeeks.org/python-introduction-to-web-development-using-flask/

Setiaji, B., & Wibowo, F. W. (2016). Chatbot Using a Knowledge in Database: Human-to-

Machine Conversation Modeling. 2016 7th International Conference on Intelligent

Systems, Modelling, and Simulation (ISMS). https://doi.org/10.1109/ISMS.2016.53

Singh, P. (2020, January 14). LSTM- Long Short-Term Memory. Medium.

https://medium.com/analytics-vidhya/lstm-long-short-term-memory-5ac02af47606

Skolo Online. (2021, March 27). Create a 㓄㓅㓆㓇㓈Deep Learning㓄㓅㓆㓇㓈 Machine Learning Chatbot with

Python and Flask. https://www.youtube.com/watch?v=8HifpykuTI4

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural

Networks. ArXiv:1409.3215 [Cs]. http://arxiv.org/abs/1409.3215

NLP CHATBOT FINAL VERSION 32

TensorFlow. (n.d.). TensorFlow. Retrieved October 5, 2021, from https://www.tensorflow.org/

Understanding Python Pickling with example. (2017, June 8). GeeksforGeeks.

https://www.geeksforgeeks.org/understanding-python-pickling-example/

Wasser, L. (2020, October 7). Hierarchical Data Formats—What is HDF5? | NSF NEON | Open

Data to Understand our Ecosystems. https://www.neonscience.org/resources/learning-

hub/tutorials/about-hdf5

What is Machine Learning Inference? (n.d.). Hazelcast. Retrieved October 9, 2021, from

https://hazelcast.com/glossary/machine-learning-inference/

What is NumPy? —NumPy v1.21 Manual. (n.d.). Retrieved October 5, 2021, from

https://numpy.org/doc/stable/user/whatisnumpy.html

What is Scikit-Learn? (n.d.). Codecademy. Retrieved October 5, 2021, from

https://www.codecademy.com/articles/scikit-learn

