
Running head: BUILD A TENSORFLOW DEMO 1

OPTION #1: Build a TensorFlow Demo

Scott Miner

Colorado State University – Global Campus

BUILD A TENSORFLOW DEMO 2

Abstract

This paper investigates the creation of a Word2Vec word embedding model using

Wikipedia data and TensorFlow 2.0+. Word embeddings, which represent words as dense,

lower-dimensional vectors, are crucial for various natural language processing tasks, including

semantic parsing, sentiment analysis, part-of-speech tagging, and named-entity recognition. The

paper focuses on the skip-gram negative-sampling model of the Word2Vec algorithm, a scalable

and efficient method for generating high-quality word embeddings. Using TensorFlow 2.0+ and

a Wikipedia dataset, the model is trained through unsupervised learning techniques,

demonstrating the potential applications in the author's chatbot development project. The paper

concludes with suggestions for enhancing the model and its dataset, highlighting the significance

of word embeddings in natural language processing tasks.

BUILD A TENSORFLOW DEMO 3

Figure 1. Python output showing GPU support for TensorFlow installed

Figure 2. Code screenshot (part 1)

BUILD A TENSORFLOW DEMO 4

Figure 3. Code screenshot (part 2)

BUILD A TENSORFLOW DEMO 5

Figure 4. Code screenshot (part 3)

BUILD A TENSORFLOW DEMO 6

Figure 5. Code screenshot (part 5)

BUILD A TENSORFLOW DEMO 7

Figure 6. The CBOW and SG models. Adapted from “Efficient Estimation of Word Representations in Vector Space,” by Mikolov et
al., 2013, ArXiv:1301.3781 [Cs], p. 5.

Figure 7. Program output (part 1)

BUILD A TENSORFLOW DEMO 8

Figure 8. Program output (part 2)

BUILD A TENSORFLOW DEMO 9

Figure 9. Program output (part 3)

BUILD A TENSORFLOW DEMO 10

Table of Contents

Abstract ... 2

Introduction to Word Representation ... 11

The Distributional Hypothesis .. 11

Word Embeddings and Their Applications .. 12

The word2vec Algorithm .. 12

Skip Grams and Continuous Bag-of-Words ... 12

Hierarchical Softmax and Negative Sampling .. 13

Dataset Description ... 13

Setting Parameters and Pre-processing Data .. 14

Data Preparation.. 14

Model Training ... 14

Model Evaluation and Results .. 15

Conclusion .. 15

References ... 17

BUILD A TENSORFLOW DEMO 11

OPTION #1: Build a TensorFlow Demo

This paper explores the process of building a word2vec word embedding (WE) model

using Wikipedia data and TensorFlow (TF) 2.0+. TensorFlow, as defined by Abadi et al. (2016),

is an interface for expressing machine learning algorithms. The installation of TensorFlow,

including GPU support, was successful and without issues, as shown in Figure 1. The researcher

followed a “TensorFlow-Examples” tutorial to build a WE model. After downloading and

running the Jupyter Notebook file, the researcher examined the tutorial more closely using

Visual Studio. Figures 2 – 5 display the demo code, while 7 – 9 illustrate the program’s output.

Some code statements required updates for compatibility with Python 3. This paper overviews

word representations and WEs and delves into the demo’s model and dataset details.

Introduction to Word Representation

Word representation lies at the core of natural language processing (NLP) (Levy &

Goldberg, 2014). However, many contemporary NLP systems treat words as atomic units,

lacking representations that capture the similarities between words (Mikolov et al., 2013a).

Consequently, these systems are often simple and robust but inadequate for numerous tasks and

prone to poor generalization. For example, when employing symbolic representations where

discrete symbols denote each word, it becomes impossible to discern the relationship between

“coffee” and “water.” Furthermore, although “water” represents a strong argument for the verb

“drink,” we cannot infer that “coffee” serves as an equally strong argument.

The Distributional Hypothesis

To address these limitations, researchers aim to develop word representations that convey

semantic and syntactic similarities (Levy et al., 2015). Harris (1954, as cited in Levy et al., 2015)

introduced the distributional hypothesis, which has since become the foundation for numerous

BUILD A TENSORFLOW DEMO 12

paradigms designed to acquire such representations. According to this hypothesis, words that

appear in similar contexts share similar meanings.

Word Embeddings and Their Applications

Word embeddings (WEs) represent words as dense, lower-dimensional vectors derived

from neural network-inspired training methods and recent techniques, capturing both semantic

and syntactic relationships between words (Levy & Goldberg, 2014; Rothe & Schütze, 2015).

Although the dimensions of WEs are considered opaque, making it challenging to attribute

specific meanings (Levy et al., 2015), the geometric distances between these d-dimensional

vectors accurately reflect word relationships (Almeida & Xexéo, 2019; Bamler & Mandt, 2017).

For example, Mikolov et al. (2013a) discovered that simple algebraic operations on WE

vectors, such as vector(“King”) - vector(“Man”) + vector(“Woman”), yield a vector closest to

the word “Queen.” Consequently, WEs prove valuable in various NLP tasks, including semantic

parsing, sentiment analysis (Bamler & Mandt, 2017), part-of-speech tagging, and named-entity

recognition (Wang et al., 2019). These use cases illustrate how the researcher can utilize WEs in

his chatbot development project.

The word2vec Algorithm

Word2vec, an algorithm introduced by Mikolov et al. (2013a), generates word

embeddings (WEs) that scale efficiently with large datasets and deliver high-quality results

(Kusner et al., 2015).

Skip Grams and Continuous Bag-of-Words

According to “Stanford University,” word2vec utilizes either skip-grams (SG) or

continuous bag-of-words (CBOW) algorithms to create WEs, along with hierarchical softmax or

negative sampling methods for calculating probability distributions. While CBOW predicts the

BUILD A TENSORFLOW DEMO 13

current word based on context words, SG predicts surrounding words using the current word

(Mikolov et al., 2013a).

Hierarchical Softmax and Negative Sampling

This paper focuses on the SG with a negative sampling model, an unsupervised, state-of-

the-art WE technique (Kusner et al., 2015; Levy et al., 2015). Levy et al. (2015) explain that the

unsupervised SG with a negative sampling model associates each target word (w) with a vector

(vw) and each context word (c) with a vector (vc). The model learns to maximize the dot product

(vc⋅vw) for “good” word-context pairs by treating each vector entry as a learnable parameter.

The negative sampling objective aims to maximize the log probability of observed word-

context pairs in the data. To avoid a trivial solution of setting vc=vw, the objective includes

word-context pairs with low probabilities. For instance, with training data “The quick brown fox

jumps,” Jordan Boyd-Graber (2019) suggests corrupting the sample by replacing “brown” with a

random word, such as “transparent.” The model aims to set vector values so that the dot product

between focus and context words is high in the former case and low for the corrupted word-

context pairs.

Optimizing with Stochastic Gradient Descent

Surprisingly, optimizing this negative sampling objective with stochastic-gradient

descent (SGD) yields WEs with remarkable similarity for words in similar contexts (Levy et al.,

2015).

Dataset Description

The demo in this paper implements the word2vec algorithm to create word embeddings

(WEs) from a Wikipedia data dump using TensorFlow 2.0+. Mahoney (2011) describes the text8

dataset as a 100 MB cleaned-up version of a Wikipedia data dump from 2006. The lowercase

BUILD A TENSORFLOW DEMO 14

dataset comprises English letters and spaces (Tomar, 2019). The demo reports dataset details,

such as the number of words and unique words and the ten most frequently occurring words.

Setting Parameters and Pre-processing Data

Before processing, the program imports necessary libraries and sets various training,

model, and evaluation parameters. It is designed to return the eight nearest neighbors (NNs) of

six test words, with embedding vector dimensions set to 200, a maximum vocabulary size of

50,000, and a minimum word occurrence threshold of 10. Hyperparameter tuning could

potentially improve the model’s performance.

Data Preparation

The program downloads the text8.zip file, processes it, and creates a dictionary object

containing the frequency counts for the 50,000 most frequently occurring words. Infrequent

words are removed, reducing the vocabulary size to 47,135. The program counts “unknown”

words, adds word indices to the data list, and creates two dictionary objects for converting words

between string and numerical representations.

Afterward, the program outputs the dataset information mentioned earlier and ensures

that specific functions are computed on the CPU rather than the GPU, as not all operations are

GPU-compatible. The program creates an embedding variable with randomly generated values,

where each row represents a WE vector. It also generates weight and bias variables for

calculating the Noise Contrastive Estimation (NCE) loss and defines the SGD optimizer, setting

the learning rate parameter to 0.1 (Mikolov et al., 2013b). Additionally, the program creates a

test dataset that converts each testing word to its corresponding index.

Model Training

BUILD A TENSORFLOW DEMO 15

Next, the program trains the model for a specified number of steps, set at 3,000,000 in the

demo. Training begins with creating feature (x) and target (y) variables for the data using the

vocabulary. The program employs a context window of size seven, incrementally moving

through each word in the vocabulary. Explanatory and target variables are generated by selecting

the center word from each context window as the model’s input and randomly choosing two

context words from the same window as ground truth target variables. This results in an

unsupervised learning model.

During training, the model applies the SGD optimization process to the data, converting

each word in the focus and context vectors into their distributed representations. It then computes

the average NCE loss for each batch using the weight and bias vectors and randomly sampling

64 negative classes.

Model Evaluation and Results

Subsequently, the model computes gradients for each batch and updates its weights,

biases, and embeddings based on these gradients. The program reports the model’s loss after

every 10,000th step. It evaluates the skip-gram model at every 200,000th step by converting the

six test words to their corresponding embeddings and calculating the cosine similarity between

each test set embedding and all other embeddings. These cosine similarities are ranked in

descending order, and the eight nearest neighbors (NNs) for each test word are output.

Comparing the first evaluation output to the three millionth step (Figures 7 – 9) reveals

the program’s increased accuracy. For example, the NNs for “Britain” at the last training step,

which include “England,” “Europe,” “British,” “Germany,” and “France,” are more semantically

and syntactically related to the target word than the NNs output after step 1.

Conclusion

BUILD A TENSORFLOW DEMO 16

In summary, this paper explored the concepts of word representations and word

embeddings (WEs), delving into the word2vec algorithm and its underlying principles. Utilizing

TensorFlow 2.0+ and a Wikipedia dataset, the paper demonstrated the process of constructing

WEs through the unsupervised learning techniques of the skip-gram negative-sampling model.

The paper also highlighted the potential applications of these techniques in the author's chatbot

development project and suggested avenues for enhancing the model and its dataset.

BUILD A TENSORFLOW DEMO 17

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,

Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2016). TensorFlow: Large-

Scale Machine Learning on Heterogeneous Distributed Systems. ArXiv:1603.04467 [Cs].

http://arxiv.org/abs/1603.04467

Almeida, F., & Xexéo, G. (2019). Word embeddings: A survey. ArXiv Preprint

ArXiv:1901.09069.

Bamler, R., & Mandt, S. (2017). Dynamic Word Embeddings. International Conference on

Machine Learning, 380–389. https://proceedings.mlr.press/v70/bamler17a.html

Jordan Boyd-Graber. (2019, February 17). Understanding Word2Vec.

https://www.youtube.com/watch?v=QyrUentbkvw

Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015). From word embeddings to document

distances. International Conference on Machine Learning, 957–966.

Levy, O., & Goldberg, Y. (2014). Dependency-Based Word Embeddings. Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers), 302–308. https://doi.org/10.3115/v1/P14-2050

Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving Distributional Similarity with Lessons

Learned from Word Embeddings. Transactions of the Association for Computational

Linguistics, 3, 211–225. https://doi.org/10.1162/tacl_a_00134

Mahoney, M. (2011, September 1). About the Test Data. http://mattmahoney.net/dc/textdata.html

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient Estimation of Word

Representations in Vector Space. ArXiv:1301.3781 [Cs]. http://arxiv.org/abs/1301.3781

http://arxiv.org/abs/1603.04467
https://proceedings.mlr.press/v70/bamler17a.html
https://www.youtube.com/watch?v=QyrUentbkvw
https://doi.org/10.3115/v1/P14-2050
https://doi.org/10.1162/tacl_a_00134
http://mattmahoney.net/dc/textdata.html
http://arxiv.org/abs/1301.3781

BUILD A TENSORFLOW DEMO 18

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed

Representations of Words and Phrases and their Compositionality. Advances in Neural

Information Processing Systems, 26.

https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-

Abstract.html

Rothe, S., & Schütze, H. (2015). AutoExtend: Extending Word Embeddings to Embeddings for

Synsets and Lexemes. Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), 1793–1803.

https://doi.org/10.3115/v1/P15-1173

Stanford University School of Engineering. (2017, April 3). Lecture 2 | Word Vector

Representations: Word2vec. https://www.youtube.com/watch?v=ERibwqs9p38

TensorFlow-Examples/tensorflow_v2 at master · aymericdamien/TensorFlow-Examples. (n.d.).

GitHub. Retrieved September 7, 2021, from

https://github.com/aymericdamien/TensorFlow-Examples

Tomar, D. (2019, September 1). Using benchmark datasets: Character-level Language Modeling.

Medium. https://dhananjaytomar.medium.com/using-benchmark-datasets-character-level-

language-modeling-ef16afa21101

Wang, B., Wang, A., Chen, F., Wang, Y., & Kuo, C.-C. J. (2019). Evaluating Word Embedding

Models: Methods and Experimental Results. APSIPA Transactions on Signal and

Information Processing, 8, e19. https://doi.org/10.1017/ATSIP.2019.12

https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.3115/v1/P15-1173
https://www.youtube.com/watch?v=ERibwqs9p38
https://github.com/aymericdamien/TensorFlow-Examples
https://dhananjaytomar.medium.com/using-benchmark-datasets-character-level-language-modeling-ef16afa21101
https://dhananjaytomar.medium.com/using-benchmark-datasets-character-level-language-modeling-ef16afa21101
https://doi.org/10.1017/ATSIP.2019.12

