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Abstract 

This paper investigates the creation of a Word2Vec word embedding model using 

Wikipedia data and TensorFlow 2.0+. Word embeddings, which represent words as dense, 

lower-dimensional vectors, are crucial for various natural language processing tasks, including 

semantic parsing, sentiment analysis, part-of-speech tagging, and named-entity recognition. The 

paper focuses on the skip-gram negative-sampling model of the Word2Vec algorithm, a scalable 

and efficient method for generating high-quality word embeddings. Using TensorFlow 2.0+ and 

a Wikipedia dataset, the model is trained through unsupervised learning techniques, 

demonstrating the potential applications in the author's chatbot development project. The paper 

concludes with suggestions for enhancing the model and its dataset, highlighting the significance 

of word embeddings in natural language processing tasks. 

  



BUILD A TENSORFLOW DEMO  3 

 

 

Figure 1. Python output showing GPU support for TensorFlow installed 

 

Figure 2. Code screenshot (part 1) 
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Figure 3. Code screenshot (part 2) 



BUILD A TENSORFLOW DEMO  5 

 

Figure 4. Code screenshot (part 3) 
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Figure 5. Code screenshot (part 5) 
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Figure 6. The CBOW and SG models. Adapted from “Efficient Estimation of Word Representations in Vector Space,” by Mikolov et 
al., 2013, ArXiv:1301.3781 [Cs], p. 5.  

 

Figure 7. Program output (part 1) 
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Figure 8. Program output (part 2) 
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Figure 9. Program output (part 3) 
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OPTION #1: Build a TensorFlow Demo 

This paper explores the process of building a word2vec word embedding (WE) model 

using Wikipedia data and TensorFlow (TF) 2.0+. TensorFlow, as defined by Abadi et al. (2016), 

is an interface for expressing machine learning algorithms. The installation of TensorFlow, 

including GPU support, was successful and without issues, as shown in Figure 1. The researcher 

followed a “TensorFlow-Examples” tutorial to build a WE model. After downloading and 

running the Jupyter Notebook file, the researcher examined the tutorial more closely using 

Visual Studio. Figures 2 – 5 display the demo code, while 7 – 9 illustrate the program’s output. 

Some code statements required updates for compatibility with Python 3. This paper overviews 

word representations and WEs and delves into the demo’s model and dataset details. 

Introduction to Word Representation 

Word representation lies at the core of natural language processing (NLP) (Levy & 

Goldberg, 2014). However, many contemporary NLP systems treat words as atomic units, 

lacking representations that capture the similarities between words (Mikolov et al., 2013a). 

Consequently, these systems are often simple and robust but inadequate for numerous tasks and 

prone to poor generalization. For example, when employing symbolic representations where 

discrete symbols denote each word, it becomes impossible to discern the relationship between 

“coffee” and “water.” Furthermore, although “water” represents a strong argument for the verb 

“drink,” we cannot infer that “coffee” serves as an equally strong argument. 

The Distributional Hypothesis 

To address these limitations, researchers aim to develop word representations that convey 

semantic and syntactic similarities (Levy et al., 2015). Harris (1954, as cited in Levy et al., 2015) 

introduced the distributional hypothesis, which has since become the foundation for numerous 
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paradigms designed to acquire such representations. According to this hypothesis, words that 

appear in similar contexts share similar meanings. 

Word Embeddings and Their Applications 

Word embeddings (WEs) represent words as dense, lower-dimensional vectors derived 

from neural network-inspired training methods and recent techniques, capturing both semantic 

and syntactic relationships between words (Levy & Goldberg, 2014; Rothe & Schütze, 2015). 

Although the dimensions of WEs are considered opaque, making it challenging to attribute 

specific meanings (Levy et al., 2015), the geometric distances between these d-dimensional 

vectors accurately reflect word relationships (Almeida & Xexéo, 2019; Bamler & Mandt, 2017). 

For example, Mikolov et al. (2013a) discovered that simple algebraic operations on WE 

vectors, such as vector(“King”) - vector(“Man”) + vector(“Woman”), yield a vector closest to 

the word “Queen.” Consequently, WEs prove valuable in various NLP tasks, including semantic 

parsing, sentiment analysis (Bamler & Mandt, 2017), part-of-speech tagging, and named-entity 

recognition (Wang et al., 2019). These use cases illustrate how the researcher can utilize WEs in 

his chatbot development project. 

The word2vec Algorithm 

Word2vec, an algorithm introduced by Mikolov et al. (2013a), generates word 

embeddings (WEs) that scale efficiently with large datasets and deliver high-quality results 

(Kusner et al., 2015).  

Skip Grams and Continuous Bag-of-Words 

According to “Stanford University,” word2vec utilizes either skip-grams (SG) or 

continuous bag-of-words (CBOW) algorithms to create WEs, along with hierarchical softmax or 

negative sampling methods for calculating probability distributions. While CBOW predicts the 
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current word based on context words, SG predicts surrounding words using the current word 

(Mikolov et al., 2013a). 

Hierarchical Softmax and Negative Sampling 

This paper focuses on the SG with a negative sampling model, an unsupervised, state-of-

the-art WE technique (Kusner et al., 2015; Levy et al., 2015). Levy et al. (2015) explain that the 

unsupervised SG with a negative sampling model associates each target word (w) with a vector 

(vw) and each context word (c) with a vector (vc). The model learns to maximize the dot product 

(vc⋅vw) for “good” word-context pairs by treating each vector entry as a learnable parameter. 

The negative sampling objective aims to maximize the log probability of observed word-

context pairs in the data. To avoid a trivial solution of setting vc=vw, the objective includes 

word-context pairs with low probabilities. For instance, with training data “The quick brown fox 

jumps,” Jordan Boyd-Graber (2019) suggests corrupting the sample by replacing “brown” with a 

random word, such as “transparent.” The model aims to set vector values so that the dot product 

between focus and context words is high in the former case and low for the corrupted word-

context pairs. 

Optimizing with Stochastic Gradient Descent 

Surprisingly, optimizing this negative sampling objective with stochastic-gradient 

descent (SGD) yields WEs with remarkable similarity for words in similar contexts (Levy et al., 

2015). 

Dataset Description 

The demo in this paper implements the word2vec algorithm to create word embeddings 

(WEs) from a Wikipedia data dump using TensorFlow 2.0+. Mahoney (2011) describes the text8 

dataset as a 100 MB cleaned-up version of a Wikipedia data dump from 2006. The lowercase 
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dataset comprises English letters and spaces (Tomar, 2019). The demo reports dataset details, 

such as the number of words and unique words and the ten most frequently occurring words. 

Setting Parameters and Pre-processing Data 

Before processing, the program imports necessary libraries and sets various training, 

model, and evaluation parameters. It is designed to return the eight nearest neighbors (NNs) of 

six test words, with embedding vector dimensions set to 200, a maximum vocabulary size of 

50,000, and a minimum word occurrence threshold of 10. Hyperparameter tuning could 

potentially improve the model’s performance. 

Data Preparation 

The program downloads the text8.zip file, processes it, and creates a dictionary object 

containing the frequency counts for the 50,000 most frequently occurring words. Infrequent 

words are removed, reducing the vocabulary size to 47,135. The program counts “unknown” 

words, adds word indices to the data list, and creates two dictionary objects for converting words 

between string and numerical representations. 

Afterward, the program outputs the dataset information mentioned earlier and ensures 

that specific functions are computed on the CPU rather than the GPU, as not all operations are 

GPU-compatible. The program creates an embedding variable with randomly generated values, 

where each row represents a WE vector. It also generates weight and bias variables for 

calculating the Noise Contrastive Estimation (NCE) loss and defines the SGD optimizer, setting 

the learning rate parameter to 0.1 (Mikolov et al., 2013b). Additionally, the program creates a 

test dataset that converts each testing word to its corresponding index. 

Model Training 
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Next, the program trains the model for a specified number of steps, set at 3,000,000 in the 

demo. Training begins with creating feature (x) and target (y) variables for the data using the 

vocabulary. The program employs a context window of size seven, incrementally moving 

through each word in the vocabulary. Explanatory and target variables are generated by selecting 

the center word from each context window as the model’s input and randomly choosing two 

context words from the same window as ground truth target variables. This results in an 

unsupervised learning model. 

During training, the model applies the SGD optimization process to the data, converting 

each word in the focus and context vectors into their distributed representations. It then computes 

the average NCE loss for each batch using the weight and bias vectors and randomly sampling 

64 negative classes. 

Model Evaluation and Results 

Subsequently, the model computes gradients for each batch and updates its weights, 

biases, and embeddings based on these gradients. The program reports the model’s loss after 

every 10,000th step. It evaluates the skip-gram model at every 200,000th step by converting the 

six test words to their corresponding embeddings and calculating the cosine similarity between 

each test set embedding and all other embeddings. These cosine similarities are ranked in 

descending order, and the eight nearest neighbors (NNs) for each test word are output. 

Comparing the first evaluation output to the three millionth step (Figures 7 – 9) reveals 

the program’s increased accuracy. For example, the NNs for “Britain” at the last training step, 

which include “England,” “Europe,” “British,” “Germany,” and “France,” are more semantically 

and syntactically related to the target word than the NNs output after step 1. 

Conclusion 
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In summary, this paper explored the concepts of word representations and word 

embeddings (WEs), delving into the word2vec algorithm and its underlying principles. Utilizing 

TensorFlow 2.0+ and a Wikipedia dataset, the paper demonstrated the process of constructing 

WEs through the unsupervised learning techniques of the skip-gram negative-sampling model. 

The paper also highlighted the potential applications of these techniques in the author's chatbot 

development project and suggested avenues for enhancing the model and its dataset. 
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