
Running head: BINARY SEARCH TREE 1

Option #1: Binary Search Tree

Scott Miner

Colorado State University – Global Campus

BINARY SEARCH TREE 2

Abstract

This paper introduces an efficient algorithm for constructing and maintaining a balanced

binary search tree (BST) or AVL tree from a given list of items. The proposed algorithm sorts

the input items according to the ordering property of the BST while ensuring the insertion of

only unique values. The implementation provides insert() and delete() methods that facilitate the

addition and removal of nodes within the tree while preserving its balance. The algorithm

demonstrates the successful execution of these methods in a program, maintaining a balanced

BST structure throughout various insertions and deletions.

The paper also offers an overview of BSTs and AVL trees, highlighting the importance

of maintaining tree height using rebalancing operations closely linked with update operations. By

implementing such rebalancing strategies, the AVL tree can significantly reduce the runtime

complexity of BST update operations from O(N) to O(log N). This work presents a

comprehensive approach to constructing and managing balanced BSTs, enhancing performance

and efficiency in various applications.

BINARY SEARCH TREE 3

Figure 1. Node class constructor with overridden comparison operators, enabling effortless node comparisons based on key values.

BINARY SEARCH TREE 4

Figure 2. Tree class initialization and root attribute, utilizing the build_tree() method to construct the balanced binary search tree.

BINARY SEARCH TREE 5

Figure 3. Insert() method implementation for adding nodes to the binary search tree while maintaining balance.

BINARY SEARCH TREE 6

Figure 4. Delete() and delete_node() methods for removing nodes from the binary search tree and ensuring proper tree balance.

BINARY SEARCH TREE 7

Figure 5. Main() function designed for testing the binary search tree program with insertion and deletion operations.

BINARY SEARCH TREE 8

Figure 6. Program output highlighting the balanced binary search tree after insertion and deletion operations.

BINARY SEARCH TREE 9

Table of Contents

Abstract ... 2

Option #1: Binary Search Tree ... 10

Node Class .. 10

Tree Class and build_tree() Method ... 10

Ordering Property of BST ... 10

AVL Trees and Rebalancing ... 10

Insert and Delete Methods .. 11

Search Function .. 11

Runtime and Space Complexity.. 11

Program Implementation and Testing ... 11

Building and Balancing the BST .. 11

Inserting and Deleting Nodes .. 12

Conclusion .. 12

References ... 14

BINARY SEARCH TREE 10

Option #1: Binary Search Tree

This paper presents the construction of a simple binary search tree (BST) using a Node

class and a Tree class.

Node Class

The Node class contains attributes for a node’s key value, parent node, left and right

children, and height. The constructor for the Node class overrides the comparison operators to

allow for the easy comparison of nodes based on their key values (Figure 1).

Tree Class and build_tree() Method

The Tree class accepts an array when initialized and contains an attribute, root, which

uses the return value of the build_tree() method (Figure 2). The build_tree() method first

removes any duplicate values from the initial list, as BSTs can only contain unique values. Then,

the method iterates through each list value, inserting each key per the BST’s ordering property.

Ordering Property of BST

 The ordering property of a BST is defined as follows: the keys of any node’s left subtree

are ≤ the node’s key and the keys of any node’s right subtree are ≥ the node’s key (Lysecky &

Vahid, 2019). The runtime complexity of the BST insertion algorithm varies between O(log N)

in the best case and O(N) in the worst case.

AVL Trees and Rebalancing

An AVL tree is a BST with a height property and rebalancing operations that maintain a

tree’s balance factor after the insertion and deletion of nodes (Lysecky & Vahid, 2019; Bronson

et al., 2010). AVL trees are self-balancing BSTs named after their inventors, Adelson-Velsky

and Landis (Tsakalidis, 1985).

BINARY SEARCH TREE 11

In an AVL tree, the heights of the left and right subtrees below any node differ by at most

one (e.g., -1, 0, or 1) (Davis, 1987). The build_tree() method in Figure 2 traverses a path from a

newly inserted node’s parent up to the tree’s root, rebalancing each node along the way for those

with balance factors of 2 or -2. After inserting the elements and balancing the BST, the

build_tree() method returns the tree’s root to the calling function.

Insert and Delete Methods

Search Function

The insert() and delete() methods accept values to insert into and delete from the BST

(Figures 3 and 4). The delete() method begins by calling the search() function to locate a node to

delete. The insertion algorithm also calls this function and, if the algorithm encounters a node

already in the tree, outputs a message to the user conveying the node must be deleted before it

can be inserted. After the deletion algorithm removes a node from an AVL tree, it traverses a

path from the parent of the removed node up to the tree’s root, rebalancing all the removed

node’s ancestors along the way if needed (Lysecky & Vahid, 2019).

Runtime and Space Complexity

The worst-case scenario requires visiting all levels of the BST to find a node to delete and

then traversing back up to the tree’s root to rebalance it. The algorithm visits one node per level

and makes, at most, two rotations per node to rebalance the tree, making the runtime complexity

of the AVL tree removal algorithm O(log N). The insertion and deletion algorithms use a fixed

number of pointers to perform these operations, making the space complexity O(1).

Program Implementation and Testing

Building and Balancing the BST

BINARY SEARCH TREE 12

The main() function of the program (Figure 5) tests the build_tree(), insert(), and delete()

functions by generating a list of 20 random integers between 1 and 100 with replacement. The

program then creates an instance of the Tree class by passing the randomly generated list of

integers as an argument to the Tree class’s constructor. The constructor calls the build_tree()

method with the list of integers and returns the root node to the calling function. Step 1 of Figure

6 shows this newly constructed, balanced BST.

Inserting and Deleting Nodes

Step 2 of the main() function inserts three random values between 20 and 100 into the

BST. If the data structure already contains any of these values, the algorithm outputs an

informative message to the user, as shown in Figure 6, since BSTs can only contain unique

values. Step 3 of the main() function generates a list of all node keys in the BST, shuffles the list,

and randomly removes the first three values from the BST. Figure 6 shows the rebalanced BST

after removing the integers 15, 7, and 90.

Conclusion

This paper presented an algorithm for constructing a balanced binary search tree (BST) or

AVL tree from a list of items. The algorithm sorted all array items according to the ordering

property of the BST and ensured that only unique values could be inserted into the BST. The

insert() and delete() methods of the algorithm allowed for the insertion and removal of nodes

from the BST, with successful execution demonstrated in the program screenshots.

After inserting or removing a node, the algorithm traversed a path from the node’s parent

to the tree’s root, calculating the balance factor at each node and performing any needed

rotations for balance factors of 2 or -2. This paper also provided an overview of BSTs and AVL

trees. By maintaining the height of BSTs using rebalancing operations tightly coupled with

BINARY SEARCH TREE 13

update operations, AVL trees can reduce the runtime complexity of BST update operations from

O(N) to O(log N).

BINARY SEARCH TREE 14

References

Bronson, N., Casper, J., Chafi, H., & Olukotun, K. (2010). A Practical Concurrent Binary Search

Tree. In ACM SIGPLAN Notices (Vol. 45, p. 268).

https://doi.org/10.1145/1693453.1693488

Davis, I. J. (1987). A locally correctable AVL tree. Digest of Papers: The Seventeenth

International Symposium on Fault-Tolerant Computing, 85–88.

Larsen, K. S. (1994). AVL trees with relaxed balance. Proceedings of 8th International Parallel

Processing Symposium, 888–893.

Lysecky, R., & Vahid, F. (2019). Data Structures Essential: Pseudocode with Python Examples.

Zyante Inc. (zyBooks.com).

Tsakalidis, A. K. (1985). AVL-trees for localized search. Information and Control, 67(1–3),

173–194.

https://doi.org/10.1145/1693453.1693488

