Running head: BINARY SEARCH TREE

Option #1: Binary Search Tree
Scott Miner

Colorado State University — Global Campus

BINARY SEARCH TREE 2

Abstract

This paper introduces an efficient algorithm for constructing and maintaining a balanced
binary search tree (BST) or AVL tree from a given list of items. The proposed algorithm sorts
the input items according to the ordering property of the BST while ensuring the insertion of
only unique values. The implementation provides insert() and delete() methods that facilitate the
addition and removal of nodes within the tree while preserving its balance. The algorithm
demonstrates the successful execution of these methods in a program, maintaining a balanced
BST structure throughout various insertions and deletions.

The paper also offers an overview of BSTs and AVL trees, highlighting the importance
of maintaining tree height using rebalancing operations closely linked with update operations. By
implementing such rebalancing strategies, the AVL tree can significantly reduce the runtime
complexity of BST update operations from O(N) to O(log N). This work presents a
comprehensive approach to constructing and managing balanced BSTs, enhancing performance

and efficiency in various applications.

BINARY SEARCH TREE 3

from functools import total ordering

@total ordering
class Node:

def init (self, key):
self.key = key
self.parent = None
self.left = None
self.right = None
self.height = ©

def 1t (self, other):
nl < n2 calls n1. Lt (n2)
return hasattr(other, ‘'key') and self.key < other.key

def eq (self, other):
return hasattr(other, 'key') and self.key == other.key

Figure 1. Node class constructor with overridden comparison operators, enabling effortless node comparisons based on key values.

BINARY SEARCH TREE

class Tree():

def _init_ (self, initiallList):
#self.size = ©
self.root = self.build tree(initiallist)
self.current_node = None

def build _tree(self, initiallList):
initiallist = list(OrderedDict.fromkeys(initiallList))
for _ in range(len(initiallList)):
node_to_insert = Node(initialList[_])
Special case: if the tree 1is empty, just set the root
the new node
if == 0:
self.root = node_to_insert
node_to_insert.parent = None
else:
current_node = self.root
Step 1 - do a regular binary search tree insert.
while (current_node is not None):
if node_to_insert < current_node:
if current_node.left is None:
current_node.left = node_to_insert
node_to_insert.parent = current_node
current_node = None
continue
else:
current_node = current_node.left

else:

If there 1s no right child, add the new

node here; otherwise repeat from the

right child.

if current_node.right is None:
current_node.right = node_to_insert
node_to _insert.parent = current_node
current_node = None
continue

else:
current_node = current_node.right

Step 2 - Reblanace along a path from the
new node's parent up to the root
node_to_insert = node_to_insert.parent
while node_to_insert is not None:
self.rebalance(node_to_insert)
node_to_insert = node_to_insert.parent

return(self.root)

Figure 2. Tree class initialization and root attribute, utilizing the build_tree() method to construct the balanced binary search tree.

BINARY SEARCH TREE 5

def insert(self, node_to_insert):
search_node = self.search(node_to_insert)
if search_node is not None:
print(f"Node {search_node.key} already exists, remove {search_node.key} before inserting.")
else:
node_to_insert = Node(node_to_insert)
Special case: if the tree is empty, just set the root
the new node
if self.root is None:
self.root = node_to_insert
node_to_insert.parent = None
else:
current_node = self.root
Step 1 - do a regular binary search tree insert.
while (current_node is not None):
if node_to_insert < current node:
if current node.left is None:
current_node.left = node_to_insert
node_to_insert.parent = current_node
current_node = None
continue
else:
current node = current node.left

else:

If there is no right child, add the new

node here; otherwise repeat from the

right child.

if current _node.right is None:
current_node.right = node_to_insert
node_to_insert.parent = current_node
current_node = None
continue

else:
current node = current node.right

Step 2 - Reblanace along a path from the new node's parent up
to the root
node_to_insert = node_to_insert.parent
while node_to_insert is not None:
self.rebalance(node_to_insert)
node_to_insert = node_to_insert.parent

Figure 3. Insert() method implementation for adding nodes to the binary search tree while maintaining balance.

BINARY SEARCH TREE

def delete(self, key):
node = self.search(key)
if node is None:
return False
else:
return self.delete_node(node)

def delete_node(self, node):

if node is None:
return False

Parent needed for rebalancing.
parent = node.parent

Case 1: Internal node with 2 children
if node.left is not None and node.right is not None:
Find successor
successor_node = node.right
while successor_node.left != None:
successor_node = succssor_node.left

Copy the value from the node
node.key = successor_node.key

Recursively remove successor
self.delete_node(successor_node)

Nothing left to do since the recursive call will have rebalanced
return True

Case 2: Root node (with 1 or @ children)
elif node is self.root:
if node.left is not None:
self.root = node.left
else:
self.root = node.right

if self.root is not None:
self.root.parent = None

return True

Case 3: Internal with left child only
elif node.left is not None:
parent.replace_child(node, node.left)

Case 4: Internal with right child only OR leaf
else:
parent.replace_child(node, node.right)

node is gone. Anything that was below node that has persisted is already correctly
balanced, but ancestors of node may need rebaglancing.
node = parent
while node is not None:
self.rebalance(node)
node = node.parent

return True

Figure 4. Delete() and delete_node() methods for removing nodes from the binary search tree and ensuring proper tree balance.

BINARY SEARCH TREE 7

def main():
create a seed
seed_value = random.randrange(sys.maxsize)
print('Seed value:', seed_value)
print()
random.seed(seed_value)

Create the initial list to put in the tree
initList = []
for i in range(LIST_LENGTH):
any random numbers from 1 to 100
initList.append(random.randint(1, 100))
print("Initial elements:")
print(initList)

Create tree with initial Llist

t = Tree(initList)

print()

print(“Step #1.")

print('Initial AVL tree after inserting the above list and rebalancing:')
print(t)

Insert 3 random numbers into the tree

Between 20 and 100

list_inserted = []

print("Step #2.")

for _ in range(3):
random_var = random.randint(20,100)
list_inserted.append(random_var)
t.insert(random_var)

print the updated tree

converted_list = [str(element) for element in list_inserted]

print(f'AVL Tree after attempting to insert {", ".join(converted_list)} and rebalancing:')
print(t)

Deleting Nodes

list_removed = []

all variables = t.make_list(t.root)
random.shuffle(all_variables)

for _ in range(3):
random_var = all_variables[_]
list_removed.append(random_var)
t.delete(random_var)

print the updated tree

converted_list = [str(element) for element in list removed]

print("Step #3.")

print(f'AVL Tree after removing {", ".join(converted_list)} and rebalancing:')
print(t)

Figure 5. Main() function designed for testing the binary search tree program with insertion and deletion operations.

BINARY SEARCH TREE 8

Seed value: 5363867274531546244

Initial elements:
[93, 88, 61, 48, 98, 77, 65, 74, 15, 61, 35, 24, 7, 38, 82, 7, 14, 90, 42, 30]

Step #1.
Initial AVL tree after inserting the above list and rebalancing:

61

35 88

Step #2.
Node 90 already exists, remove 90 before inserting.
AVL Tree after attempting to insert 45, 86, 90 and rebalancing:

61

35 88

Step #3.
AVL Tree after removing 15, 7, 90 and rebalancing:

61

Figure 6. Program output highlighting the balanced binary search tree after insertion and deletion operations.

BINARY SEARCH TREE 9

Table of Contents
AADSTIACT ...ttt b 2
Option #1: BINArY SEAICH TTEEeciieiiecie st et cee sttt ra et e e e te e sreenesneesneeeeas 10
INOTE CHASS ...ttt bbbt b bbb et b bbbt r et nn e n e 10
Tree Class and build_tree() Methodc.ooviieiieie i 10
Ordering Property Of BSTcc.oiii ettt e e nee e nnas 10
AVL Trees and ReDAIANCING.........cciviiiiiiiiece e 10
Insert and Delete MENOAScoiiiiiii bbb 11
SEAICN FUNCLION ...ttt b ettt 11
Runtime and SPace COMPIEXILY.........coiviiiiiiiieie e sre e 11
Program Implementation and TESLING.........ccciiveiiiiieiieie e saa e 11
Building and Balancing the BSTc.cuiiiiiieie et sre e 11
Inserting and Deleting NOUES.ccuiiiiiieie et sre e 12
CONCIUSTON ...tttk bbb bbbttt bbb n et b e 12

R B B BN CES ...ttt ettt n ittt et ettt ettt ittt it e ettt ittt e e e nnnnnnnnnnnnnnnnnnnn 14

BINARY SEARCH TREE 10

Option #1: Binary Search Tree

This paper presents the construction of a simple binary search tree (BST) using a Node
class and a Tree class.
Node Class

The Node class contains attributes for a node’s key value, parent node, left and right
children, and height. The constructor for the Node class overrides the comparison operators to
allow for the easy comparison of nodes based on their key values (Figure 1).
Tree Class and build_tree() Method

The Tree class accepts an array when initialized and contains an attribute, root, which
uses the return value of the build_tree() method (Figure 2). The build_tree() method first
removes any duplicate values from the initial list, as BSTs can only contain unique values. Then,
the method iterates through each list value, inserting each key per the BST’s ordering property.
Ordering Property of BST

The ordering property of a BST is defined as follows: the keys of any node’s left subtree
are < the node’s key and the keys of any node’s right subtree are > the node’s key (Lysecky &
Vahid, 2019). The runtime complexity of the BST insertion algorithm varies between O(log N)
in the best case and O(N) in the worst case.

AVL Trees and Rebalancing

An AVL tree is a BST with a height property and rebalancing operations that maintain a
tree’s balance factor after the insertion and deletion of nodes (Lysecky & Vahid, 2019; Bronson
et al., 2010). AVL trees are self-balancing BSTs named after their inventors, Adelson-Velsky

and Landis (Tsakalidis, 1985).

BINARY SEARCH TREE 11

In an AVL tree, the heights of the left and right subtrees below any node differ by at most
one (e.g., -1, 0, or 1) (Davis, 1987). The build_tree() method in Figure 2 traverses a path from a
newly inserted node’s parent up to the tree’s root, rebalancing each node along the way for those
with balance factors of 2 or -2. After inserting the elements and balancing the BST, the
build_tree() method returns the tree’s root to the calling function.

Insert and Delete Methods

Search Function

The insert() and delete() methods accept values to insert into and delete from the BST
(Figures 3 and 4). The delete() method begins by calling the search() function to locate a node to
delete. The insertion algorithm also calls this function and, if the algorithm encounters a node
already in the tree, outputs a message to the user conveying the node must be deleted before it
can be inserted. After the deletion algorithm removes a node from an AVL tree, it traverses a
path from the parent of the removed node up to the tree’s root, rebalancing all the removed
node’s ancestors along the way if needed (Lysecky & Vahid, 2019).
Runtime and Space Complexity

The worst-case scenario requires visiting all levels of the BST to find a node to delete and
then traversing back up to the tree’s root to rebalance it. The algorithm visits one node per level
and makes, at most, two rotations per node to rebalance the tree, making the runtime complexity
of the AVL tree removal algorithm O(log N). The insertion and deletion algorithms use a fixed
number of pointers to perform these operations, making the space complexity O(1).

Program Implementation and Testing

Building and Balancing the BST

BINARY SEARCH TREE 12

The main() function of the program (Figure 5) tests the build_tree(), insert(), and delete()
functions by generating a list of 20 random integers between 1 and 100 with replacement. The
program then creates an instance of the Tree class by passing the randomly generated list of
integers as an argument to the Tree class’s constructor. The constructor calls the build_tree()
method with the list of integers and returns the root node to the calling function. Step 1 of Figure
6 shows this newly constructed, balanced BST.

Inserting and Deleting Nodes

Step 2 of the main() function inserts three random values between 20 and 100 into the
BST. If the data structure already contains any of these values, the algorithm outputs an
informative message to the user, as shown in Figure 6, since BSTs can only contain unique
values. Step 3 of the main() function generates a list of all node keys in the BST, shuffles the list,
and randomly removes the first three values from the BST. Figure 6 shows the rebalanced BST
after removing the integers 15, 7, and 90.

Conclusion

This paper presented an algorithm for constructing a balanced binary search tree (BST) or
AVL tree from a list of items. The algorithm sorted all array items according to the ordering
property of the BST and ensured that only unique values could be inserted into the BST. The
insert() and delete() methods of the algorithm allowed for the insertion and removal of nodes
from the BST, with successful execution demonstrated in the program screenshots.

After inserting or removing a node, the algorithm traversed a path from the node’s parent
to the tree’s root, calculating the balance factor at each node and performing any needed
rotations for balance factors of 2 or -2. This paper also provided an overview of BSTs and AVL

trees. By maintaining the height of BSTs using rebalancing operations tightly coupled with

BINARY SEARCH TREE 13

update operations, AVL trees can reduce the runtime complexity of BST update operations from

O(N) to O(log N).

BINARY SEARCH TREE 14

References
Bronson, N., Casper, J., Chafi, H., & Olukotun, K. (2010). A Practical Concurrent Binary Search
Tree. In ACM SIGPLAN Notices (Vol. 45, p. 268).

https://doi.org/10.1145/1693453.1693488

Davis, 1. J. (1987). A locally correctable AVL tree. Digest of Papers: The Seventeenth
International Symposium on Fault-Tolerant Computing, 85-88.

Larsen, K. S. (1994). AVL trees with relaxed balance. Proceedings of 8th International Parallel
Processing Symposium, 888-893.

Lysecky, R., & Vahid, F. (2019). Data Structures Essential: Pseudocode with Python Examples.
Zyante Inc. (zyBooks.com).

Tsakalidis, A. K. (1985). AVL-trees for localized search. Information and Control, 67(1-3),

173-194.

https://doi.org/10.1145/1693453.1693488

