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Abstract 

This paper presents a k-Nearest Neighbors classifier (k-NN-C) implemented in Python, 

which achieves a mean accuracy of 96.67% on the Iris Dataset using 5-fold cross-validation, 

with the number of nearest neighbors set to 10. The Iris Dataset, comprising three classes and 

four attributes, serves as a foundation for understanding classification techniques. The k-NN-C 

model is a lazy learner that leverages Euclidean distance to identify similarities between 

observation pairs and makes predictions based on the k nearest neighbors. By using cross-

validation, the classifier’s performance is assessed on mutually exclusive data splits, ensuring a 

robust evaluation. The implemented Python program reads the Iris Dataset, preprocesses the 

data, and applies the k-NN-C algorithm to make predictions. Additionally, the program accepts 

user input for previously unseen iris plant features and generates class predictions based on the 

model. This work demonstrates the effectiveness of the k-NN-C model on a widely recognized 

dataset and lays the groundwork for future research in feature normalization and model 

optimization. 
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Figure 1. Python code to implement a k-NN-C from scratch (part 1) 
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Figure 2. Python code to implement a k-NN-C from scratch (part 2) 
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Figure 3. Python code to implement a k-NN-C from scratch (part 3) 

 

Figure 4. Program output and predictions based on user input similar to the training examples found on the right-hand side of the 
image 
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OPTION #1: KNN Classifier with Iris Data 

This paper presents a k-Nearest Neighbors classifier (k-NN-C) built from scratch in 

Python, achieving a notable mean accuracy of 96.67% on the renowned Iris Dataset using 5-fold 

cross-validation (CV). The model’s number of nearest neighbors is set to 10. Fenner (2019) 

discusses the Iris Dataset, often referred to as Fisher’s Iris Dataset, named after the eminent mid-

20th-century statistician, Sir Ronald Fisher, who pioneered its use in one of the earliest academic 

papers on classification. The dataset comprises three distinct classes, with 50 instances per class, 

representing the types of iris plants: (a) Setosa, (b) Versicolor, and (c) Virginica. Four 

descriptive attributes measure these plants in centimeters: (a) sepal length, (b) sepal width, (c) 

petal length, and (d) petal width. 

User Input and Model Predictions 

Upon training the k-NN-C model on the Iris Dataset, the program invites users to input 

four floating-point numbers, separated by commas or spaces, representing the features of 

previously unencountered iris plants. Subsequently, the program generates the model’s class 

prediction based on this user input, demonstrating its practical utility in real-world scenarios. 

Introduction to the k-Nearest Neighbor Classifier (k-NN-C) 

Fenner (2019) highlights k-NN-C as a relatively simple yet effective machine-learning 

model designed to make predictions using labeled datasets. At its core, k-NN-C assesses 

similarities between pairs of observations, selects a predefined number of the most similar 

instances, and combines these findings to generate a single output prediction. While the 

Euclidean distance is frequently employed to measure similarities among features, alternative 

metrics like Minkowski and Hamming distances can also be utilized. In k-NN-C, the variable ‘k’ 
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denotes the number of nearest neighbors that the model relies on for its predictions. Typically, 

practitioners experiment with values such as 1, 3, 10, and 20 to find the optimal setting. 

Understanding the k-Nearest Neighbor Classifier (k-NN-C) Algorithm and Its Unique 

Characteristics 

Fenner (2019) emphasizes the unique characteristics of k-NN-C models in comparison to 

other machine learning approaches, particularly their reliance on the entirety of the training data 

when making predictions for new test cases. Consequently, removing any training observations 

could result in inaccurate predictions, as these records might have been crucial in determining 

the nearest neighbors for specific test cases. This property classifies k-NN-C as a lazy learner, 

which, unlike eager learners such as logistic regression, does not have a dedicated training phase. 

Instead, it retains all training data for use during the prediction phase, making this process more 

computationally intensive than that of eager learners (KNN Algorithm - Finding Nearest 

Neighbors, n.d.; Why Is Nearest Neighbor a Lazy Algorithm?, 2021). 

Program and Model Architecture 

Figures 1 – 3 illustrate the Python code used to create the k-NN-C model, with much of 

the code adapted from Brownlee (2019). The program starts by reading the Iris Dataset from the 

data/iris.txt file using the load_csv() function (lines 12 – 20, Figure 1). To ensure the dataset’s 

features are in the correct format, str_column_to_float() (lines 28 – 38, Figure 1) converts the 

features from strings to floating-point numbers, while str_column_to_int() (lines 23 – 35, Figure 

1) converts the string representation of each iris plant category to integers for easier processing 

by the k-NN-C model. 

Cross-Validation Process 
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The cross_validation_split() method (lines 56 – 67, Figure 1) divides the dataset into five 

cross-validation (CV) splits. Barrow and Crone (2013) describe CV as a technique to estimate 

the expected accuracy of a predictive algorithm by averaging predictive errors across mutually 

exclusive subsamples of the data (p. 1). The function divides the dataset into k mutually 

exclusive groups of roughly equal size, as determined by the user-defined k value. One fold is 

reserved for the validation dataset, while the remaining folds form the training data. The model is 

trained on the training data and evaluated using the validation dataset (Brownlee, 2019). 

Barrow and Crone (2013) explain that the CV process is repeated k times, with each fold 

serving as the validation dataset exactly once. The program records the accuracy scores for each 

of the k evaluation sessions and calculates the final measure of the model’s predictive accuracy 

by averaging these scores across the k folds. The accuracy_metric() function (lines 70 – 75, 

Figure 2) calculates the model’s accuracy for each fold using the formula:
# correct predictions

# total predictions
. The 

advantages of k-fold CV are that it uses all observations for both training and validation datasets, 

uses all training observations with equal weight, and uses each observation for validation exactly 

once.  

Generating Predictions and Calculating Euclidean Distance 

Since k-NN-C is a lazy learning algorithm, it doesn't have a specialized training phase but 

instead uses all its training data to generate predictions during the evaluation phase. The 

evaluate_algorithm() method (lines 78 – 98, Figure 2) calls k_nearest_neighbors(), which 

iterates over the test dataset and calls predict_classification() for each row of test data. 

Predict_classification() then calls get_neighbors(), which in turn calls the euclidean_distance() 

function (lines 101 – 105, Figure 2) to calculate the Euclidean distance between each training 

example and a given test example using the formula: 
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𝑑 = √(𝑠𝑙𝑡𝑟𝑎𝑖𝑛 − 𝑠𝑙𝑡𝑒𝑠𝑡)2 + (𝑠𝑤𝑡𝑟𝑎𝑖𝑛 − 𝑠𝑤𝑡𝑒𝑠𝑡)2 + (𝑝𝑙𝑡𝑟𝑎𝑖𝑛 − 𝑝𝑙𝑡𝑒𝑠𝑡)2 + (𝑝𝑤𝑡𝑟𝑎𝑖𝑛 − 𝑝𝑤𝑡𝑒𝑠𝑡)2. 

The variables sl, sw, pl, and pw represent sepal length, sepal width, petal length, and petal width 

for each training and test example (Brownlee, 2019). 

Model Evaluation, User Input, and Future Research 

The k-NN-C model achieves a mean accuracy of 96.67% on the Iris Dataset using 5-fold 

CV, with the number of nearest neighbors set to 10 (Figure 4). The program then allows users to 

input four floating-point numbers representing the sepal length, sepal width, petal length, and 

petal width of previously unseen iris plants. For example, by inputting features similar to, but not 

identical with, the training examples shown in Figure 4, the model accurately predicts each iris 

plant category. The driver code for user input is shown in lines 134 – 177 of Figure 3. Users 

must input four valid numerical features, separated by spaces or commas, for the model to 

generate a valid prediction. If the input is incorrect, the program notifies the user and prompts for 

new input. Additional functions, like the normalize_dataset() function, can be used in future 

research to assess how normalizing the input features of the Iris Dataset affects the classifier's 

mean accuracy (Brownlee, 2019). 

Conclusion 

In conclusion, this paper presented an overview of a k-Nearest Neighbor classifier (k-

NN-C) built from scratch in Python, achieving 96.67% accuracy on the Iris Dataset using 5-fold 

cross-validation (CV), with the model's number of neighbors set to 10. The paper provided an 

overview of the Iris Dataset, k-NN-C models, and CV. The classifier's inner workings were also 

explained, including the calculation of Euclidean distance for each training example per test 

example, sorting of results, and summation of frequencies of the k nearest neighbor classes to 
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produce predictions. The program also accepts user input for iris plant features previously unseen 

by the model and generates predictions based on the training data. 
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