
Running head: KNN CLASSIFIER WITH IRIS DATA 1

OPTION #1: KNN Classifier with Iris Data

Scott Miner

Colorado State University – Global Campus

KNN CLASSIFIER WITH IRIS DATA 2

Abstract

This paper presents a k-Nearest Neighbors classifier (k-NN-C) implemented in Python,

which achieves a mean accuracy of 96.67% on the Iris Dataset using 5-fold cross-validation,

with the number of nearest neighbors set to 10. The Iris Dataset, comprising three classes and

four attributes, serves as a foundation for understanding classification techniques. The k-NN-C

model is a lazy learner that leverages Euclidean distance to identify similarities between

observation pairs and makes predictions based on the k nearest neighbors. By using cross-

validation, the classifier’s performance is assessed on mutually exclusive data splits, ensuring a

robust evaluation. The implemented Python program reads the Iris Dataset, preprocesses the

data, and applies the k-NN-C algorithm to make predictions. Additionally, the program accepts

user input for previously unseen iris plant features and generates class predictions based on the

model. This work demonstrates the effectiveness of the k-NN-C model on a widely recognized

dataset and lays the groundwork for future research in feature normalization and model

optimization.

KNN CLASSIFIER WITH IRIS DATA 3

Figure 1. Python code to implement a k-NN-C from scratch (part 1)

KNN CLASSIFIER WITH IRIS DATA 4

Figure 2. Python code to implement a k-NN-C from scratch (part 2)

KNN CLASSIFIER WITH IRIS DATA 5

Figure 3. Python code to implement a k-NN-C from scratch (part 3)

Figure 4. Program output and predictions based on user input similar to the training examples found on the right-hand side of the
image

KNN CLASSIFIER WITH IRIS DATA 6

Table of Contents

Abstract ... 2

OPTION #1: KNN Classifier with Iris Data ... 7

User Input and Model Predictions .. 7

Introduction to the k-Nearest Neighbor Classifier (k-NN-C) ... 7

Understanding the k-Nearest Neighbor Classifier (k-NN-C) Algorithm and Its Unique

Characteristics ... 8

Program and Model Architecture.. 8

Cross-Validation Process .. 8

Generating Predictions and Calculating Euclidean Distance.. 9

Model Evaluation, User Input, and Future Research .. 10

Conclusion .. 10

References ... 12

KNN CLASSIFIER WITH IRIS DATA 7

OPTION #1: KNN Classifier with Iris Data

This paper presents a k-Nearest Neighbors classifier (k-NN-C) built from scratch in

Python, achieving a notable mean accuracy of 96.67% on the renowned Iris Dataset using 5-fold

cross-validation (CV). The model’s number of nearest neighbors is set to 10. Fenner (2019)

discusses the Iris Dataset, often referred to as Fisher’s Iris Dataset, named after the eminent mid-

20th-century statistician, Sir Ronald Fisher, who pioneered its use in one of the earliest academic

papers on classification. The dataset comprises three distinct classes, with 50 instances per class,

representing the types of iris plants: (a) Setosa, (b) Versicolor, and (c) Virginica. Four

descriptive attributes measure these plants in centimeters: (a) sepal length, (b) sepal width, (c)

petal length, and (d) petal width.

User Input and Model Predictions

Upon training the k-NN-C model on the Iris Dataset, the program invites users to input

four floating-point numbers, separated by commas or spaces, representing the features of

previously unencountered iris plants. Subsequently, the program generates the model’s class

prediction based on this user input, demonstrating its practical utility in real-world scenarios.

Introduction to the k-Nearest Neighbor Classifier (k-NN-C)

Fenner (2019) highlights k-NN-C as a relatively simple yet effective machine-learning

model designed to make predictions using labeled datasets. At its core, k-NN-C assesses

similarities between pairs of observations, selects a predefined number of the most similar

instances, and combines these findings to generate a single output prediction. While the

Euclidean distance is frequently employed to measure similarities among features, alternative

metrics like Minkowski and Hamming distances can also be utilized. In k-NN-C, the variable ‘k’

KNN CLASSIFIER WITH IRIS DATA 8

denotes the number of nearest neighbors that the model relies on for its predictions. Typically,

practitioners experiment with values such as 1, 3, 10, and 20 to find the optimal setting.

Understanding the k-Nearest Neighbor Classifier (k-NN-C) Algorithm and Its Unique

Characteristics

Fenner (2019) emphasizes the unique characteristics of k-NN-C models in comparison to

other machine learning approaches, particularly their reliance on the entirety of the training data

when making predictions for new test cases. Consequently, removing any training observations

could result in inaccurate predictions, as these records might have been crucial in determining

the nearest neighbors for specific test cases. This property classifies k-NN-C as a lazy learner,

which, unlike eager learners such as logistic regression, does not have a dedicated training phase.

Instead, it retains all training data for use during the prediction phase, making this process more

computationally intensive than that of eager learners (KNN Algorithm - Finding Nearest

Neighbors, n.d.; Why Is Nearest Neighbor a Lazy Algorithm?, 2021).

Program and Model Architecture

Figures 1 – 3 illustrate the Python code used to create the k-NN-C model, with much of

the code adapted from Brownlee (2019). The program starts by reading the Iris Dataset from the

data/iris.txt file using the load_csv() function (lines 12 – 20, Figure 1). To ensure the dataset’s

features are in the correct format, str_column_to_float() (lines 28 – 38, Figure 1) converts the

features from strings to floating-point numbers, while str_column_to_int() (lines 23 – 35, Figure

1) converts the string representation of each iris plant category to integers for easier processing

by the k-NN-C model.

Cross-Validation Process

KNN CLASSIFIER WITH IRIS DATA 9

The cross_validation_split() method (lines 56 – 67, Figure 1) divides the dataset into five

cross-validation (CV) splits. Barrow and Crone (2013) describe CV as a technique to estimate

the expected accuracy of a predictive algorithm by averaging predictive errors across mutually

exclusive subsamples of the data (p. 1). The function divides the dataset into k mutually

exclusive groups of roughly equal size, as determined by the user-defined k value. One fold is

reserved for the validation dataset, while the remaining folds form the training data. The model is

trained on the training data and evaluated using the validation dataset (Brownlee, 2019).

Barrow and Crone (2013) explain that the CV process is repeated k times, with each fold

serving as the validation dataset exactly once. The program records the accuracy scores for each

of the k evaluation sessions and calculates the final measure of the model’s predictive accuracy

by averaging these scores across the k folds. The accuracy_metric() function (lines 70 – 75,

Figure 2) calculates the model’s accuracy for each fold using the formula:
correct predictions

total predictions
. The

advantages of k-fold CV are that it uses all observations for both training and validation datasets,

uses all training observations with equal weight, and uses each observation for validation exactly

once.

Generating Predictions and Calculating Euclidean Distance

Since k-NN-C is a lazy learning algorithm, it doesn't have a specialized training phase but

instead uses all its training data to generate predictions during the evaluation phase. The

evaluate_algorithm() method (lines 78 – 98, Figure 2) calls k_nearest_neighbors(), which

iterates over the test dataset and calls predict_classification() for each row of test data.

Predict_classification() then calls get_neighbors(), which in turn calls the euclidean_distance()

function (lines 101 – 105, Figure 2) to calculate the Euclidean distance between each training

example and a given test example using the formula:

KNN CLASSIFIER WITH IRIS DATA 10

𝑑 = √(𝑠𝑙𝑡𝑟𝑎𝑖𝑛 − 𝑠𝑙𝑡𝑒𝑠𝑡)2 + (𝑠𝑤𝑡𝑟𝑎𝑖𝑛 − 𝑠𝑤𝑡𝑒𝑠𝑡)2 + (𝑝𝑙𝑡𝑟𝑎𝑖𝑛 − 𝑝𝑙𝑡𝑒𝑠𝑡)2 + (𝑝𝑤𝑡𝑟𝑎𝑖𝑛 − 𝑝𝑤𝑡𝑒𝑠𝑡)2.

The variables sl, sw, pl, and pw represent sepal length, sepal width, petal length, and petal width

for each training and test example (Brownlee, 2019).

Model Evaluation, User Input, and Future Research

The k-NN-C model achieves a mean accuracy of 96.67% on the Iris Dataset using 5-fold

CV, with the number of nearest neighbors set to 10 (Figure 4). The program then allows users to

input four floating-point numbers representing the sepal length, sepal width, petal length, and

petal width of previously unseen iris plants. For example, by inputting features similar to, but not

identical with, the training examples shown in Figure 4, the model accurately predicts each iris

plant category. The driver code for user input is shown in lines 134 – 177 of Figure 3. Users

must input four valid numerical features, separated by spaces or commas, for the model to

generate a valid prediction. If the input is incorrect, the program notifies the user and prompts for

new input. Additional functions, like the normalize_dataset() function, can be used in future

research to assess how normalizing the input features of the Iris Dataset affects the classifier's

mean accuracy (Brownlee, 2019).

Conclusion

In conclusion, this paper presented an overview of a k-Nearest Neighbor classifier (k-

NN-C) built from scratch in Python, achieving 96.67% accuracy on the Iris Dataset using 5-fold

cross-validation (CV), with the model's number of neighbors set to 10. The paper provided an

overview of the Iris Dataset, k-NN-C models, and CV. The classifier's inner workings were also

explained, including the calculation of Euclidean distance for each training example per test

example, sorting of results, and summation of frequencies of the k nearest neighbor classes to

KNN CLASSIFIER WITH IRIS DATA 11

produce predictions. The program also accepts user input for iris plant features previously unseen

by the model and generates predictions based on the training data.

KNN CLASSIFIER WITH IRIS DATA 12

References

Barrow, D. K., & Crone, S. F. (2013). Crogging (cross-validation aggregation) for forecasting—

A novel algorithm of neural network ensembles on time series subsamples. The 2013

International Joint Conference on Neural Networks (IJCNN), 1–8.

Brownlee, J. (2019, October 23). Develop k-Nearest Neighbors in Python from Scratch. Machine

Learning Mastery. https://machinelearningmastery.com/tutorial-to-implement-k-nearest-

neighbors-in-python-from-scratch/

Fenner, M. (2019). Machine Learning in Python for Everyone. Addison-Wesley.

KNN Algorithm—Finding Nearest Neighbors. (n.d.). Retrieved August 28, 2021, from

https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_

python_knn_algorithm_finding_nearest_neighbors.htm

Why is Nearest Neighbor a Lazy Algorithm? (2021, August 25). Dr. Sebastian Raschka.

https://sebastianraschka.com/faq/docs/lazy-knn.html

https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_knn_algorithm_finding_nearest_neighbors.htm
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_knn_algorithm_finding_nearest_neighbors.htm
https://sebastianraschka.com/faq/docs/lazy-knn.html

	Abstract
	OPTION #1: KNN Classifier with Iris Data
	User Input and Model Predictions
	Introduction to the k-Nearest Neighbor Classifier (k-NN-C)
	Understanding the k-Nearest Neighbor Classifier (k-NN-C) Algorithm and Its Unique Characteristics

	Program and Model Architecture
	Cross-Validation Process
	Generating Predictions and Calculating Euclidean Distance
	Model Evaluation, User Input, and Future Research
	Conclusion
	References

