Running head: KNN CLASSIFIER WITH IRIS DATA

OPTION #1: KNN Classifier with Iris Data
Scott Miner

Colorado State University — Global Campus

KNN CLASSIFIER WITH IRIS DATA

Abstract

This paper presents a k-Nearest Neighbors classifier (k-NN-C) implemented in Python,
which achieves a mean accuracy of 96.67% on the Iris Dataset using 5-fold cross-validation,
with the number of nearest neighbors set to 10. The Iris Dataset, comprising three classes and
four attributes, serves as a foundation for understanding classification techniques. The k-NN-C
model is a lazy learner that leverages Euclidean distance to identify similarities between
observation pairs and makes predictions based on the k nearest neighbors. By using cross-
validation, the classifier’s performance is assessed on mutually exclusive data splits, ensuring a
robust evaluation. The implemented Python program reads the Iris Dataset, preprocesses the
data, and applies the k-NN-C algorithm to make predictions. Additionally, the program accepts
user input for previously unseen iris plant features and generates class predictions based on the
model. This work demonstrates the effectiveness of the k-NN-C model on a widely recognized
dataset and lays the groundwork for future research in feature normalization and model

optimization.

KNN CLASSIFIER WITH IRIS DATA

1

WoO~NOTUVTBAWN

41

KNN.py = x

@ normalize_dataset

import pandas as pd

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
k-nearest neighbors on the Iris Flowers Dataset
from random import seed

from random import randrange

from csv import reader

from math import sqrt

import re

Load a CSV file
def load_csv(filename):
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(file)
for row in csv_reader:
if not row:
continue
dataset.append(row)
return dataset

Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())

Convert string column to integer
-def str_column_to_int(dataset, column):
class_values = [row[column] for row in dataset]
unique = set(class_values)
lookup = dict()
create dictionary
for i, value in enumerate(unique):
lookup[value] = i
convert dataset column
for row in dataset:
row[column] = lookup[row[column]]
return lookup

Find the min and max values for each column
-def dataset_minmax(dataset):
minmax = list()
for i in range(len(dataset[0])):
col_values = [row[i] for row in dataset]
value_min = min(col_values)
value_max = max(col_values)
minmax.append([value_min, value_max])
return minmax

Rescale dataset columns to the range ©-1
-def normalize_dataset(dataset, minmax):
for row in dataset:
for i in range(len(row)):
row[i] = (row[i] - minmax[i][@]) / (minmax[i][1] - minmax[i][e])

Split a dataset into k folds
-def cross_validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold_size = int(len(dataset) / n_folds)
for _ in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split

Figure 1. Python code to implement a k-NN-C from scratch (part 1)

KNN CLASSIFIER WITH IRIS DATA

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
lel
102
1e3
104
105
106
107
108
1e9
1le
111
132
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

KNN.py *= x

@ evaluate_algorithm

return dataset_split

Calculate accuracy percentage

-def accuracy_metric(actual, predicted):

correct = @
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0

Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
create hold out set
train_set.remove(fold)
#combine train sets
train_set = sum(train_set, [])
create test set on new hold
test_set = lisft()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
remove prediction from hold out set
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores

Calculate the Euclidean distance between two vectors
def euclidean_distance(rowl, row2):
distance = 0.0
for i in range(len(rowl) - 1):
distance += (rowl[i] - row2[i]) ** 2
return sqrt(distance)

Locate the most similar neighbors

-def get_neighbors(train, test_row, num_neighbors):

distances = list()

for train_row in train:
dist = euclidean_distance(test_row, train_row)
distances.append((train_row, dist))

distances.sort(key=lambda tup: tup[1])

neighbors = list()

for i in range(num_neighbors):
neighbors.append(distances[i][@])

return neighbors

Make a prediction with neighbors

-def predict_classification(train, test_row, num_neighbors):

neighbors = get_neighbors(train, test_row, num_neighbors)
output_values = [row[-1] for row in neighbors]

prediction = max(set(output_values), key=output_values.count)
return prediction

kNN Algorithm
def k_nearest_neighbors(train, test, num_neighbors):
predictions = list()
for row in test:
output = predict_classification(train, row, num_neighbors)
predictions.append(output)
return(predictions)

Figure 2. Python code to implement a k-NN-C from scratch (part 2)

KNN CLASSIFIER WITH IRIS DATA 5

Test the kNN on the Iris Flowers dataset

seed(1)

filename = 'data/iris.txt’

dataset = load_csv(filename)

for i in range(len(dataset[0]) - 1):
str_column_to_float(dataset[1:], i)

convert class column to integers

versicolor : @

#

#

virginica: 1
setosa: 2
lookup = str_column_to_int(dataset[1:], len(dataset[@]) - 1)

evaluate algorithm

n_folds = 5

num_neighbors = 10

scores = evaluate_algorithm(dataset[1:], k_nearest_neighbors, n_folds, num_neighbors)

Print (' FF s kkkbsrkkkhbs sk kbbbt hhhh kR R R R R R KRR KRR AR R R AR K)
print(f'*')

print(f'* K-Nearest Neighbor (KNN) algorithm with {num_neighbors} neighbors trained on a ')
print(f'* dataset containing {len(dataset)-1} rows and {len(dataset[1])-1} features, using {n_folds}-fold cross validation.')
print(f'*')

print(f'* Users can adjust the n_folds and num_neighbors variables in the script.')

print(f'*')

B T A LD
print()

print(f'Accuracy per fold: {scores}')

print(f'Mean Accuracy: {sum(scores) / float(len(scores)):.3f}")

while True:
try:
sl, sw, pl, pw = [float(x) for x in re.split(r'\, | |\,', input('\nPlease input four floating point numbers, representing, respectively,\n\
sepal length, sepal width, petal length, and petal width \n(e.g., 5.1, 3.5, 1.4, 0.2). The model will guess the flower category\n\
(i.e., setosa, versicolor, or virginica) based on your input (CTRL-C to Exit): '))]
test_row = [sl, sw, pl, pw]
test_row
prediction = predict_classification(train=dataset[1:], test_row=test_row, num_neighbors=num_neighbors)
for key, value in lookup.items():

if prediction == value:
prediction = key
print()
print(f'Prediction: {prediction}')
except ValueError:
print('\nNote: wrong input format.')

Figure 3. Python code to implement a k-NN-C from scratch (part 3)

1.6,0.2,-Iris-setosa
,1,Iris-versicolor
.8,6.4,2,Iris-virginica

K-Nearest Nei r (KNN) algorithm with 10 neighbors trained on a .8
dataset containing 150 rows and 4 features, using 5-fold cross validation. 5

Users can adjust the n_folds and num_neighbors variables in the script.

Accuracy per fold: [90.0, 100.0, 100.0, 93.33333333333333, 100.0]
Mean Accuracy: 96.6

Please input four floating point numbers, representing, respectively,
sepal length, sepal width, petal length, and petal width
5, 1.4, 0 The model will guess the flower category
ersicolor, or virginica) based on your input (CTRL-C to

Prediction:

Please input four floating point numbers, representing, respectively,
sepal length, sepal width, petal length, and petal width
1.4, 0.2). The model wi ess the flower categor:
on your input (CTRL-C to

Prediction: Iris-versicolor

Please input four floating point numbers, representing, respectively,
sepal length, sepal width, petal length, and petal width

Ceig . 5oL 3nss 4, 0.2). The model will the flower categor
(i.e., setosa, ve

es.
sed on your input (CTRL-C to

Prediction: Iris-vi

s, representing, r ectively,
sepal length, widt Tength, and petal width
o, 5 : 2 model will guess the flower category
; > i r, or i based on your input (CTRL-C to

Figure 4. Program output and predictions based on user input similar to the training examples found on the right-hand side of the
image

KNN CLASSIFIER WITH IRIS DATA 6

Table of Contents

AADSTIACT ...t b e e 2
OPTION #1: KNN Classifier With I1iS Data..........cccuiiiiiieieieieiesiesesieese e 7
User Input and Model PrediCtioNSooieiiiiieccec s 7
Introduction to the k-Nearest Neighbor Classifier (K-NN-C)ccccccvieiiiieiiieie e, 7

Understanding the k-Nearest Neighbor Classifier (k-NN-C) Algorithm and Its Unique

(O g o U0t] (ot SO 8
Program and Model ArChITECTUNE........ccviii et 8
CroSS-ValidatiON PrOCESSeitieiiiiieiiieiie ettt ettt sttt st be et e s e sbeestesreesbeebesneenreas 8
Generating Predictions and Calculating Euclidean DiStanCe...........cccccovveveiieeieeieciie s 9
Model Evaluation, User Input, and Future RESEArChcccevvevviierieeie e 10
(O00] 0 0] (1] (o] o PSPPSR 10

R B I EINICES ...ttt e e oo ettt e e e e e e e e et e e e e e e e e —raae e e e e —————— 12

KNN CLASSIFIER WITH IRIS DATA 7

OPTION #1: KNN Classifier with Iris Data

This paper presents a k-Nearest Neighbors classifier (k-NN-C) built from scratch in
Python, achieving a notable mean accuracy of 96.67% on the renowned Iris Dataset using 5-fold
cross-validation (CV). The model’s number of nearest neighbors is set to 10. Fenner (2019)
discusses the Iris Dataset, often referred to as Fisher’s Iris Dataset, named after the eminent mid-
20th-century statistician, Sir Ronald Fisher, who pioneered its use in one of the earliest academic
papers on classification. The dataset comprises three distinct classes, with 50 instances per class,
representing the types of iris plants: (a) Setosa, (b) Versicolor, and (c) Virginica. Four
descriptive attributes measure these plants in centimeters: (a) sepal length, (b) sepal width, (c)
petal length, and (d) petal width.

User Input and Model Predictions

Upon training the k-NN-C model on the Iris Dataset, the program invites users to input
four floating-point numbers, separated by commas or spaces, representing the features of
previously unencountered iris plants. Subsequently, the program generates the model’s class
prediction based on this user input, demonstrating its practical utility in real-world scenarios.
Introduction to the k-Nearest Neighbor Classifier (k-NN-C)

Fenner (2019) highlights k-NN-C as a relatively simple yet effective machine-learning
model designed to make predictions using labeled datasets. At its core, k-NN-C assesses
similarities between pairs of observations, selects a predefined number of the most similar
instances, and combines these findings to generate a single output prediction. While the
Euclidean distance is frequently employed to measure similarities among features, alternative

metrics like Minkowski and Hamming distances can also be utilized. In k-NN-C, the variable ‘k’

KNN CLASSIFIER WITH IRIS DATA 8

denotes the number of nearest neighbors that the model relies on for its predictions. Typically,
practitioners experiment with values such as 1, 3, 10, and 20 to find the optimal setting.
Understanding the k-Nearest Neighbor Classifier (k-NN-C) Algorithm and Its Unique
Characteristics

Fenner (2019) emphasizes the unique characteristics of k-NN-C models in comparison to
other machine learning approaches, particularly their reliance on the entirety of the training data
when making predictions for new test cases. Consequently, removing any training observations
could result in inaccurate predictions, as these records might have been crucial in determining
the nearest neighbors for specific test cases. This property classifies k-NN-C as a lazy learner,
which, unlike eager learners such as logistic regression, does not have a dedicated training phase.
Instead, it retains all training data for use during the prediction phase, making this process more
computationally intensive than that of eager learners (KNN Algorithm - Finding Nearest
Neighbors, n.d.; Why Is Nearest Neighbor a Lazy Algorithm?, 2021).
Program and Model Architecture

Figures 1 — 3 illustrate the Python code used to create the k-NN-C model, with much of
the code adapted from Brownlee (2019). The program starts by reading the Iris Dataset from the
data/iris.txt file using the load_csv() function (lines 12 — 20, Figure 1). To ensure the dataset’s
features are in the correct format, str_column_to_float() (lines 28 — 38, Figure 1) converts the
features from strings to floating-point numbers, while str_column_to_int() (lines 23 — 35, Figure
1) converts the string representation of each iris plant category to integers for easier processing
by the k-NNN-C model.

Cross-Validation Process

KNN CLASSIFIER WITH IRIS DATA 9

The cross_validation_split() method (lines 56 — 67, Figure 1) divides the dataset into five
cross-validation (CV) splits. Barrow and Crone (2013) describe CV as a technique to estimate
the expected accuracy of a predictive algorithm by averaging predictive errors across mutually
exclusive subsamples of the data (p. 1). The function divides the dataset into k mutually
exclusive groups of roughly equal size, as determined by the user-defined k value. One fold is
reserved for the validation dataset, while the remaining folds form the training data. The model is
trained on the training data and evaluated using the validation dataset (Brownlee, 2019).

Barrow and Crone (2013) explain that the CV process is repeated k times, with each fold
serving as the validation dataset exactly once. The program records the accuracy scores for each
of the k evaluation sessions and calculates the final measure of the model’s predictive accuracy

by averaging these scores across the k folds. The accuracy_metric() function (lines 70 — 75,

correct predictions

Figure 2) calculates the model’s accuracy for each fold using the formula:

total predictions

advantages of k-fold CV are that it uses all observations for both training and validation datasets,
uses all training observations with equal weight, and uses each observation for validation exactly
once.
Generating Predictions and Calculating Euclidean Distance

Since k-NN-C is a lazy learning algorithm, it doesn't have a specialized training phase but
instead uses all its training data to generate predictions during the evaluation phase. The
evaluate_algorithm() method (lines 78 — 98, Figure 2) calls k_nearest_neighbors(), which
iterates over the test dataset and calls predict_classification() for each row of test data.
Predict_classification() then calls get_neighbors(), which in turn calls the euclidean_distance()
function (lines 101 — 105, Figure 2) to calculate the Euclidean distance between each training

example and a given test example using the formula:

KNN CLASSIFIER WITH IRIS DATA 10

d = \/(Sltrain — Sltest)? + (SWerain — SWeest)? + (Plirain — Pliest)? + (DWerain — DWeest)?.
The variables sl, sw, pl, and pw represent sepal length, sepal width, petal length, and petal width
for each training and test example (Brownlee, 2019).
Model Evaluation, User Input, and Future Research

The k-NN-C model achieves a mean accuracy of 96.67% on the Iris Dataset using 5-fold
CV, with the number of nearest neighbors set to 10 (Figure 4). The program then allows users to
input four floating-point numbers representing the sepal length, sepal width, petal length, and
petal width of previously unseen iris plants. For example, by inputting features similar to, but not
identical with, the training examples shown in Figure 4, the model accurately predicts each iris
plant category. The driver code for user input is shown in lines 134 — 177 of Figure 3. Users
must input four valid numerical features, separated by spaces or commas, for the model to
generate a valid prediction. If the input is incorrect, the program notifies the user and prompts for
new input. Additional functions, like the normalize_dataset() function, can be used in future
research to assess how normalizing the input features of the Iris Dataset affects the classifier's
mean accuracy (Brownlee, 2019).

Conclusion

In conclusion, this paper presented an overview of a k-Nearest Neighbor classifier (k-
NN-C) built from scratch in Python, achieving 96.67% accuracy on the Iris Dataset using 5-fold
cross-validation (CV), with the model's number of neighbors set to 10. The paper provided an
overview of the Iris Dataset, K-NN-C models, and CV. The classifier's inner workings were also
explained, including the calculation of Euclidean distance for each training example per test

example, sorting of results, and summation of frequencies of the k nearest neighbor classes to

KNN CLASSIFIER WITH IRIS DATA 11

produce predictions. The program also accepts user input for iris plant features previously unseen

by the model and generates predictions based on the training data.

KNN CLASSIFIER WITH IRIS DATA 12

References
Barrow, D. K., & Crone, S. F. (2013). Crogging (cross-validation aggregation) for forecasting—
A novel algorithm of neural network ensembles on time series subsamples. The 2013
International Joint Conference on Neural Networks (IJCNN), 1-8.
Brownlee, J. (2019, October 23). Develop k-Nearest Neighbors in Python from Scratch. Machine

Learning Mastery. https://machinelearningmastery.com/tutorial-to-implement-k-nearest-

neighbors-in-python-from-scratch/

Fenner, M. (2019). Machine Learning in Python for Everyone. Addison-Wesley.
KNN Algorithm—Finding Nearest Neighbors. (n.d.). Retrieved August 28, 2021, from

https://www.tutorialspoint.com/machine learning with python/machine learning with

python knn algorithm finding nearest neighbors.htm

Why is Nearest Neighbor a Lazy Algorithm? (2021, August 25). Dr. Sebastian Raschka.

https://sebastianraschka.com/fag/docs/lazy-knn.html

https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_knn_algorithm_finding_nearest_neighbors.htm
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_knn_algorithm_finding_nearest_neighbors.htm
https://sebastianraschka.com/faq/docs/lazy-knn.html

	Abstract
	OPTION #1: KNN Classifier with Iris Data
	User Input and Model Predictions
	Introduction to the k-Nearest Neighbor Classifier (k-NN-C)
	Understanding the k-Nearest Neighbor Classifier (k-NN-C) Algorithm and Its Unique Characteristics

	Program and Model Architecture
	Cross-Validation Process
	Generating Predictions and Calculating Euclidean Distance
	Model Evaluation, User Input, and Future Research
	Conclusion
	References

