
Running head: 8-PUZZLE AND INFORMED SEARCH HEURISTICS 1

Option #1: Introduction to Informed Search Heuristics: An 8-Puzzle Approach

Scott Miner

Colorado State University – Global Campus

8-PUZZLE AND INFORMED SEARCH HEURISTICS 2

Abstract

This article delves into the application of an informed search algorithm, namely the A* search, to

solve the well-known 8-puzzle problem, where the goal is to arrange eight numbered tiles

sequentially in a 3x3 grid. The expansive state-space of the 8-puzzle problem necessitates the use

of heuristics, which allow for more efficient paths to the solution. The article demonstrates the

application of the A* algorithm using a practical example, highlighting its strengths and potential

drawbacks. The study also discusses the concept of Multi-Agent Path Finding (MAPF) and

draws a parallel with the 8-puzzle problem, suggesting potential real-world applications in areas

such as traffic management, warehouse management, and video game design, where strategic

planning and efficient use of resources are key.

8-PUZZLE AND INFORMED SEARCH HEURISTICS 3

Figure 1. AI program instructions, input, and output to solve an 8-puzzle

8-PUZZLE AND INFORMED SEARCH HEURISTICS 4

Figure 2. Expanding a search tree using the A* search to solve an 8-puzzle

Figure 3. Search tree used by AI program to solve an 8-puzzle

8-PUZZLE AND INFORMED SEARCH HEURISTICS 5

Figure 4. A cost-optimal solution to an 8-puzzle

Figure 5. A* search expanding multiple nodes to find a solution

8-PUZZLE AND INFORMED SEARCH HEURISTICS 6

Table of Contents

Abstract ... 2

Option #1: Introduction to Informed Search Heuristics: An 8-Puzzle Approach 7

Understanding Search Algorithms and State-Space Graphs ... 7

The Role of Heuristics in Informed Search Algorithms ... 7

A* Search: An Optimal Informed Search Algorithm ... 8

Ensuring Completeness in A* Search ... 8

Achieving Optimality in Search Algorithms through Admissible Heuristics 8

Admissible Heuristics: Misplaced Tiles and Manhattan Distance ... 9

Comparing Efficiency: A* Search with Misplaced Tiles vs. Manhattan Distance Heuristics ... 9

An Overview of the A* Search Process in the State-Space Graph ... 9

Understanding Node Expansion and Creation in A* Search .. 9

Visualizing the Goal State in A* Search... 9

Output Analysis: The Steps to Reach the Goal State .. 10

Overcoming Challenges: Memory Usage and Node Expansion in A* Search 10

Recognizing the Strengths of A* Search: Completeness, Cost-Optimality, and Efficiency 10

Real-World Applications: Implementing A* Search Beyond the 8-Puzzle 10

Solving the 8-Puzzle: Considering Inversions and Polarity ... 11

Determining the Solvability of the Puzzle .. 11

Interacting with the AI Program: Input Format and Error Handling .. 11

Conclusion .. 12

References ... 14

8-PUZZLE AND INFORMED SEARCH HEURISTICS 7

Option #1: Introduction to Informed Search Heuristics: An 8-Puzzle Approach

The concept of heuristics, as described by Feigenbaum and Feldman (1963, as cited in

Romanycia & Pelletier, 1985), refers to a procedural method that can potentially resolve a

problem, but without providing a guaranteed solution (p. 48). In a more contemporary context,

Sharda et al. (2020) interpret heuristics as the embodiment of informal knowledge that forms the

basis for sound judgment within a particular domain.

This paper sets out to explore a heuristic search problem, modeled on the classic 8-

puzzle, a challenging task involving a 3x3 grid filled with eight numbered tiles (1 through 8) and

one empty slot. The puzzle demands strategic movements - left, right, up, or down - of the tiles

into the blank slot, with the aim of aligning them in an increasing numerical sequence,

progressing from left to right and top to bottom.

As noted by Russell and Norvig (2002), each tile movement in the 8-puzzle comes with a

cost of one, and the puzzle holds the potential for 9!/2 = 181,400 achievable states.

Consequently, the complexity and expansiveness of the 8-puzzle’s state-space necessitates the

implementation of heuristic search techniques over exhaustive methods (Kunkle, 2001), a

concept which will form the crux of this paper’s exploration.

Understanding Search Algorithms and State-Space Graphs

According to Russell and Norvig (2002), search algorithms function by superimposing

search trees on state-space graphs to identify routes from initial states to end goals. In the

context of the 8-puzzle, the state-space embodies all potential board configurations, and the

search tree provides a roadmap of the transitions between these states.

The Role of Heuristics in Informed Search Algorithms

8-PUZZLE AND INFORMED SEARCH HEURISTICS 8

Russell and Norvig (2002) write that informed search algorithms distinguish themselves

from uninformed strategies through their usage of heuristics. These heuristics, or domain-

specific hints about goals, enable the algorithms to identify solutions more efficiently by offering

insights about the proximity of a given state to the goal.

A* Search: An Optimal Informed Search Algorithm

 The most renowned informed search algorithm, as pointed out by Russell and Norvig

(2002), is the A* search (pronounced “A-star search”). This algorithm, known as a best-first

search, prioritizes the expansion of nodes that yield the minimum values for its evaluation

function, expressed as 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛). In this function, 𝑔(𝑛) represents the cost of the

path from the initial state to a particular node, 𝑛, while ℎ(𝑛) is the estimated cost of the shortest

path from that node to the goal, thus acting as the heuristic. Consequently, 𝑓(𝑛) is an estimation

of the cost of the most efficient path from a state to the goal.

Ensuring Completeness in A* Search

 Russell and Norvig (2002) also highlight the completeness of the A* search, meaning that

the algorithm is designed to invariably identify a solution if one exists and to accurately declare

failure when a solution is absent.

Achieving Optimality in Search Algorithms through Admissible Heuristics

Russell and Norvig (2002) characterize optimal solutions as those having the minimum

path-cost among all possible solutions. The cost-optimality of the A* search is contingent upon

its heuristic and its admissibility. An admissible heuristic is one that never overestimates the cost

to reach a goal, whereas inadmissible heuristics may exceed the actual cost of reaching the goal,

potentially leading to suboptimal solutions. Consequently, when the heuristic applied in an A*

search is admissible, the search can be considered cost optimal.

8-PUZZLE AND INFORMED SEARCH HEURISTICS 9

Admissible Heuristics: Misplaced Tiles and Manhattan Distance

Within n-puzzle problems, two heuristics are commonly employed: (a) h1, which

represents the number of misplaced tiles, excluding the blank tile, and (b) h2, which is the sum of

the distances of the tiles from their goal positions, also known as the Manhattan distance. Both

h1 and h2 are admissible, implying that they do not overestimate the actual cost of a solution.

Comparing Efficiency: A* Search with Misplaced Tiles vs. Manhattan Distance Heuristics

In a comparative analysis, A* search using h2 consistently outperforms A* search using

h1. This is because h2 always results in fewer node expansions than h1. Therefore, the artificial

intelligence program outlined in this paper leverages the A* search with the more efficient h2

heuristic, the Manhattan distance.

An Overview of the A* Search Process in the State-Space Graph

Figure 2 offers a visual representation of the A* search traversing a state-space graph.

Nodes characterized by black borders and white backgrounds, such as the root node in this case,

denote nodes that are retained in memory. Contrastingly, nodes delineated by blue borders and

white backgrounds are yet to be visited.

Understanding Node Expansion and Creation in A* Search

Nodes exhibiting blue borders and blue backgrounds are in the process of expansion,

while those with orange borders and white backgrounds represent newly formed nodes following

the expansion of a parent node. Each node in the search tree encapsulates the layout of the 8-

puzzle, the cost of the node from the initial state, and the node’s heuristic. The numbers

appearing on the edges leading to the tree vertices identify the tile that was moved to attain each

subsequent state.

Visualizing the Goal State in A* Search

8-PUZZLE AND INFORMED SEARCH HEURISTICS 10

Figure 3 exhibits the search tree upon reaching the goal. The node marked by a blue

border and blue background in Figure 3 possesses a heuristic value of zero, signifying that this

node represents the goal state.

Output Analysis: The Steps to Reach the Goal State

Finally, Figure 4 displays the steps taken to reach this goal. These steps are output to the

console by the program as depicted in Figure 1. Furthermore, Figure 1 illustrates the instructions

provided by the program.

Overcoming Challenges: Memory Usage and Node Expansion in A* Search

Russell and Norvig (2002) highlight the primary disadvantage of A* search: its

considerable memory usage and the extensive number of nodes it expands. For a multitude of

problems, the quantity of nodes the algorithm expands can exhibit exponential growth. For

instance, Figure 5 illustrates the algorithm visiting over 100 nodes as it seeks a solution to the 8-

puzzle.

Recognizing the Strengths of A* Search: Completeness, Cost-Optimality, and Efficiency

The merits of A* search are its completeness, cost-optimality, and optimal efficiency.

Russell and Norvig (2002) point out that the algorithm’s efficiency stems from its ability to

prune search tree nodes unnecessary for identifying an optimal solution. This is a crucial aspect

for many domains within AI.

Real-World Applications: Implementing A* Search Beyond the 8-Puzzle

In a purely imaginative real-world scenario, implementing AI solutions to solve an 8-

puzzle could prove useful in the field of pathfinding, which involves plotting the most optimal

route between two points. This is like the concept of Multi-Agent Path Finding (MAPF)

discussed by Felner et al. (2017). MAPF is a well-studied problem in AI where the task is to find

8-PUZZLE AND INFORMED SEARCH HEURISTICS 11

paths for multiple agents from their start locations to their goal locations without collisions

(Felner et al., 2017).

In the context of the 8-puzzle, each agent could represent a tile that needs to move to its

goal location (the correct position in the puzzle). The challenge is to find the optimal sequence of

moves that will result in all tiles (agents) reaching their goal locations without ‘collisions’ (i.e.,

without two tiles trying to occupy the same space at the same time).

Just like MAPF, the 8-puzzle problem requires strategic planning and efficient use of

resources. In real-world applications, these AI solutions could be used in various domains such

as traffic management, warehouse management, and even in video games, where multiple

entities need to navigate a shared space efficiently and without conflict (Felner et al., 2017).

Solving the 8-Puzzle: Considering Inversions and Polarity

To solve an 8-puzzle effectively, two additional terms need to be understood: inversion

and polarity. As defined by Collier (2019), an inversion in an 8-puzzle context is a pair of tiles

arranged in descending order instead of the correct ascending order. For example, the pairs (8, 6)

and (3, 1) are inversions as they do not follow the correct numerical sequence.

Determining the Solvability of the Puzzle

Collier (2019) writes that the puzzle’s polarity is determined by the total number of these

inversions. Puzzles with an even number of inversions are solvable, whereas those with an odd

number of inversions are not. This property of the 8-puzzle is a crucial factor in determining

whether a given initial state can be converted to the puzzle’s goal state.

Interacting with the AI Program: Input Format and Error Handling

To interact with the AI program, users must input the puzzle’s initial state in a specific

format: ### #*# ###. Here, tile rows are separated by spaces, and the puzzle’s empty tile is

8-PUZZLE AND INFORMED SEARCH HEURISTICS 12

represented by an asterisk. The program is designed to handle errors in the input format or the

solvability of the initial state. If users enter an initial state that is either in an invalid format or

unsolvable, the program alerts the users of their error and prompts them to re-enter the initial

state of the 8-puzzle.

Conclusion

 This paper explored the application of heuristic solutions for a real-world search problem,

exemplified by the 8-puzzle. An interactive Python script, leveraging the A* search algorithm

and the SimpleAI library, was presented to compute an effective solution based on a given 8-

puzzle’s initial state. The robustness of the script was showcased through its capability to detect

user errors in input, such as unsolvable initial states or those in an incorrect format. The system

is designed to alert users to such errors and subsequently prompt for correct input.

At the heart of this solution is the A* search algorithm. Its completeness and use of an

admissible heuristic, specifically the Manhattan distance, ensure that the cost to reach the goal

state is never overestimated. As such, the A* search emerges as cost-optimal, finding the

solution with the lowest path-cost among all solutions, corresponding to identifying the solution

with the fewest possible tile moves in the context of the 8-puzzle.

Furthermore, the evaluation function of the A* algorithm was explained, represented as

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛). The key strengths and weaknesses of the algorithm were discussed,

offering a balanced perspective on its utility. The comparison between the 8-puzzle problem and

the concept of Multi-Agent Path Finding (MAPF) suggests potential real-world applications in

domains requiring strategic planning and efficient resource management, such as traffic control,

warehouse management, and video game design.

8-PUZZLE AND INFORMED SEARCH HEURISTICS 13

Given these characteristics, the A* search algorithm proves to be an efficacious

mechanism for solving the 8-puzzle, contributing to the broader understanding of heuristic

search algorithms and their potential in problem-solving within the field of artificial intelligence.

8-PUZZLE AND INFORMED SEARCH HEURISTICS 14

References

Collier, A. (2019, April 10). Sliding Puzzle Solvable?

https://datawookie.dev/blog/2019/04/sliding-puzzle-solvable/

Felner, A., Stern, R., Shimony, S., Boyarski, E., Goldenberg, M., Sharon, G., ... & Surynek, P.

(2017). Search-based optimal solvers for the multi-agent pathfinding problem: Summary

and challenges. In Proceedings of the International Symposium on Combinatorial Search

(Vol. 8, No. 1, pp. 29-37).

Kunkle, D. R. (2001). Solving the 8-puzzle in a minimum number of moves: An application of

the A* algorithm. Introduction to Artificial Intelligence.

Romanycia, M. H., & Pelletier, F. J. (1985). What is a heuristic? Computational Intelligence,

1(1), 47–58.

Russell, S., & Norvig, P. (2002). Artificial intelligence: A modern approach.

Sharda, R., Delen, D., & Turban, E. (2020). Analytics, data science, & artificial intelligence

(Eleventh edition). Pearson.

Welcome to simpleai’s documentation! —Simpleai 0.8.2 documentation. (n.d.). Retrieved July 4,

2021, from https://simpleai.readthedocs.io/en/latest/

https://datawookie.dev/blog/2019/04/sliding-puzzle-solvable/
https://simpleai.readthedocs.io/en/latest/

