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Abstract 

This article delves into the application of an informed search algorithm, namely the A* search, to 

solve the well-known 8-puzzle problem, where the goal is to arrange eight numbered tiles 

sequentially in a 3x3 grid. The expansive state-space of the 8-puzzle problem necessitates the use 

of heuristics, which allow for more efficient paths to the solution. The article demonstrates the 

application of the A* algorithm using a practical example, highlighting its strengths and potential 

drawbacks. The study also discusses the concept of Multi-Agent Path Finding (MAPF) and 

draws a parallel with the 8-puzzle problem, suggesting potential real-world applications in areas 

such as traffic management, warehouse management, and video game design, where strategic 

planning and efficient use of resources are key. 
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Figure 1. AI program instructions, input, and output to solve an 8-puzzle 
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Figure 2. Expanding a search tree using the A* search to solve an 8-puzzle 

 

Figure 3. Search tree used by AI program to solve an 8-puzzle 
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Figure 4. A cost-optimal solution to an 8-puzzle 

 

Figure 5. A* search expanding multiple nodes to find a solution  
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Option #1: Introduction to Informed Search Heuristics: An 8-Puzzle Approach 

The concept of heuristics, as described by Feigenbaum and Feldman (1963, as cited in 

Romanycia & Pelletier, 1985), refers to a procedural method that can potentially resolve a 

problem, but without providing a guaranteed solution (p. 48). In a more contemporary context, 

Sharda et al. (2020) interpret heuristics as the embodiment of informal knowledge that forms the 

basis for sound judgment within a particular domain. 

This paper sets out to explore a heuristic search problem, modeled on the classic 8-

puzzle, a challenging task involving a 3x3 grid filled with eight numbered tiles (1 through 8) and 

one empty slot. The puzzle demands strategic movements - left, right, up, or down - of the tiles 

into the blank slot, with the aim of aligning them in an increasing numerical sequence, 

progressing from left to right and top to bottom. 

As noted by Russell and Norvig (2002), each tile movement in the 8-puzzle comes with a 

cost of one, and the puzzle holds the potential for 9!/2 =  181,400 achievable states. 

Consequently, the complexity and expansiveness of the 8-puzzle’s state-space necessitates the 

implementation of heuristic search techniques over exhaustive methods (Kunkle, 2001), a 

concept which will form the crux of this paper’s exploration. 

Understanding Search Algorithms and State-Space Graphs 

According to Russell and Norvig (2002), search algorithms function by superimposing 

search trees on state-space graphs to identify routes from initial states to end goals. In the 

context of the 8-puzzle, the state-space embodies all potential board configurations, and the 

search tree provides a roadmap of the transitions between these states. 

The Role of Heuristics in Informed Search Algorithms 
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Russell and Norvig (2002) write that informed search algorithms distinguish themselves 

from uninformed strategies through their usage of heuristics. These heuristics, or domain-

specific hints about goals, enable the algorithms to identify solutions more efficiently by offering 

insights about the proximity of a given state to the goal. 

A* Search: An Optimal Informed Search Algorithm 

 The most renowned informed search algorithm, as pointed out by Russell and Norvig 

(2002), is the A* search (pronounced “A-star search”). This algorithm, known as a best-first 

search, prioritizes the expansion of nodes that yield the minimum values for its evaluation 

function, expressed as 𝑓(𝑛)  =  𝑔(𝑛)  +  ℎ(𝑛). In this function, 𝑔(𝑛) represents the cost of the 

path from the initial state to a particular node, 𝑛, while ℎ(𝑛) is the estimated cost of the shortest 

path from that node to the goal, thus acting as the heuristic. Consequently, 𝑓(𝑛) is an estimation 

of the cost of the most efficient path from a state to the goal. 

Ensuring Completeness in A* Search 

 Russell and Norvig (2002) also highlight the completeness of the A* search, meaning that 

the algorithm is designed to invariably identify a solution if one exists and to accurately declare 

failure when a solution is absent. 

Achieving Optimality in Search Algorithms through Admissible Heuristics 

Russell and Norvig (2002) characterize optimal solutions as those having the minimum 

path-cost among all possible solutions. The cost-optimality of the A* search is contingent upon 

its heuristic and its admissibility. An admissible heuristic is one that never overestimates the cost 

to reach a goal, whereas inadmissible heuristics may exceed the actual cost of reaching the goal, 

potentially leading to suboptimal solutions. Consequently, when the heuristic applied in an A* 

search is admissible, the search can be considered cost optimal. 
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Admissible Heuristics: Misplaced Tiles and Manhattan Distance 

Within n-puzzle problems, two heuristics are commonly employed: (a) h1, which 

represents the number of misplaced tiles, excluding the blank tile, and (b) h2, which is the sum of 

the distances of the tiles from their goal positions, also known as the Manhattan distance. Both 

h1 and h2 are admissible, implying that they do not overestimate the actual cost of a solution. 

Comparing Efficiency: A* Search with Misplaced Tiles vs. Manhattan Distance Heuristics 

In a comparative analysis, A* search using h2 consistently outperforms A* search using 

h1. This is because h2 always results in fewer node expansions than h1. Therefore, the artificial 

intelligence program outlined in this paper leverages the A* search with the more efficient h2 

heuristic, the Manhattan distance. 

An Overview of the A* Search Process in the State-Space Graph 

Figure 2 offers a visual representation of the A* search traversing a state-space graph. 

Nodes characterized by black borders and white backgrounds, such as the root node in this case, 

denote nodes that are retained in memory. Contrastingly, nodes delineated by blue borders and 

white backgrounds are yet to be visited. 

Understanding Node Expansion and Creation in A* Search 

Nodes exhibiting blue borders and blue backgrounds are in the process of expansion, 

while those with orange borders and white backgrounds represent newly formed nodes following 

the expansion of a parent node. Each node in the search tree encapsulates the layout of the 8-

puzzle, the cost of the node from the initial state, and the node’s heuristic. The numbers 

appearing on the edges leading to the tree vertices identify the tile that was moved to attain each 

subsequent state. 

Visualizing the Goal State in A* Search 
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Figure 3 exhibits the search tree upon reaching the goal. The node marked by a blue 

border and blue background in Figure 3 possesses a heuristic value of zero, signifying that this 

node represents the goal state. 

Output Analysis: The Steps to Reach the Goal State 

Finally, Figure 4 displays the steps taken to reach this goal. These steps are output to the 

console by the program as depicted in Figure 1. Furthermore, Figure 1 illustrates the instructions 

provided by the program. 

Overcoming Challenges: Memory Usage and Node Expansion in A* Search 

Russell and Norvig (2002) highlight the primary disadvantage of A* search: its 

considerable memory usage and the extensive number of nodes it expands. For a multitude of 

problems, the quantity of nodes the algorithm expands can exhibit exponential growth. For 

instance, Figure 5 illustrates the algorithm visiting over 100 nodes as it seeks a solution to the 8-

puzzle. 

Recognizing the Strengths of A* Search: Completeness, Cost-Optimality, and Efficiency 

The merits of A* search are its completeness, cost-optimality, and optimal efficiency. 

Russell and Norvig (2002) point out that the algorithm’s efficiency stems from its ability to 

prune search tree nodes unnecessary for identifying an optimal solution. This is a crucial aspect 

for many domains within AI. 

Real-World Applications: Implementing A* Search Beyond the 8-Puzzle 

In a purely imaginative real-world scenario, implementing AI solutions to solve an 8-

puzzle could prove useful in the field of pathfinding, which involves plotting the most optimal 

route between two points. This is like the concept of Multi-Agent Path Finding (MAPF) 

discussed by Felner et al. (2017). MAPF is a well-studied problem in AI where the task is to find 
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paths for multiple agents from their start locations to their goal locations without collisions 

(Felner et al., 2017). 

In the context of the 8-puzzle, each agent could represent a tile that needs to move to its 

goal location (the correct position in the puzzle). The challenge is to find the optimal sequence of 

moves that will result in all tiles (agents) reaching their goal locations without ‘collisions’ (i.e., 

without two tiles trying to occupy the same space at the same time). 

Just like MAPF, the 8-puzzle problem requires strategic planning and efficient use of 

resources. In real-world applications, these AI solutions could be used in various domains such 

as traffic management, warehouse management, and even in video games, where multiple 

entities need to navigate a shared space efficiently and without conflict (Felner et al., 2017). 

Solving the 8-Puzzle: Considering Inversions and Polarity 

To solve an 8-puzzle effectively, two additional terms need to be understood: inversion 

and polarity. As defined by Collier (2019), an inversion in an 8-puzzle context is a pair of tiles 

arranged in descending order instead of the correct ascending order. For example, the pairs (8, 6) 

and (3, 1) are inversions as they do not follow the correct numerical sequence. 

Determining the Solvability of the Puzzle 

Collier (2019) writes that the puzzle’s polarity is determined by the total number of these 

inversions. Puzzles with an even number of inversions are solvable, whereas those with an odd 

number of inversions are not. This property of the 8-puzzle is a crucial factor in determining 

whether a given initial state can be converted to the puzzle’s goal state. 

Interacting with the AI Program: Input Format and Error Handling 

To interact with the AI program, users must input the puzzle’s initial state in a specific 

format: ### #*# ###. Here, tile rows are separated by spaces, and the puzzle’s empty tile is 
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represented by an asterisk. The program is designed to handle errors in the input format or the 

solvability of the initial state. If users enter an initial state that is either in an invalid format or 

unsolvable, the program alerts the users of their error and prompts them to re-enter the initial 

state of the 8-puzzle. 

Conclusion 

 This paper explored the application of heuristic solutions for a real-world search problem, 

exemplified by the 8-puzzle. An interactive Python script, leveraging the A* search algorithm 

and the SimpleAI library, was presented to compute an effective solution based on a given 8-

puzzle’s initial state. The robustness of the script was showcased through its capability to detect 

user errors in input, such as unsolvable initial states or those in an incorrect format. The system 

is designed to alert users to such errors and subsequently prompt for correct input. 

At the heart of this solution is the A* search algorithm. Its completeness and use of an 

admissible heuristic, specifically the Manhattan distance, ensure that the cost to reach the goal 

state is never overestimated. As such, the A* search emerges as cost-optimal, finding the 

solution with the lowest path-cost among all solutions, corresponding to identifying the solution 

with the fewest possible tile moves in the context of the 8-puzzle. 

Furthermore, the evaluation function of the A* algorithm was explained, represented as 

𝑓(𝑛)  =  𝑔(𝑛)  +  ℎ(𝑛). The key strengths and weaknesses of the algorithm were discussed, 

offering a balanced perspective on its utility. The comparison between the 8-puzzle problem and 

the concept of Multi-Agent Path Finding (MAPF) suggests potential real-world applications in 

domains requiring strategic planning and efficient resource management, such as traffic control, 

warehouse management, and video game design. 
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Given these characteristics, the A* search algorithm proves to be an efficacious 

mechanism for solving the 8-puzzle, contributing to the broader understanding of heuristic 

search algorithms and their potential in problem-solving within the field of artificial intelligence. 
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